cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328652 Number of unlabeled loopless multigraphs with n edges covering four vertices.

Original entry on oeis.org

0, 1, 3, 7, 13, 25, 40, 65, 99, 146, 208, 294, 399, 538, 711, 926, 1188, 1513, 1896, 2361, 2910, 3557, 4312, 5199, 6214, 7392, 8739, 10276, 12019, 14002, 16224, 18732, 21537, 24669, 28152, 32031, 36309, 41047, 46263, 51997, 58282, 65176, 72688, 80894, 89820, 99518
Offset: 1

Views

Author

Andrew Howroyd, Oct 23 2019

Keywords

Crossrefs

Column k=4 of A309936.

Programs

  • Mathematica
    LinearRecurrence[{2,0,0,-2,-2,3,0,3,-2,-2,0,0,2,-1},{0,1,3,7,13,25,40,65,99,146,208,294,399,538},50] (* Harvey P. Dale, Mar 06 2021 *)
  • PARI
    concat([0], Vec((1 + x + x^2 - x^3 + x^4 - 2*x^5 + 2*x^6)/((1 - x)^6*(1 + x)^2*(1 + x^2)*(1 + x + x^2)^2) + O(x^40)))

Formula

a(n) = A003082(n) - A001399(n).
a(n) = 2*a(n-1) - 2*a(n-4) - 2*a(n-5) + 3*a(n-6) + 3*a(n-8) - 2*a(n-9) - 2*a(n-10) + 2*a(n-13) - a(n-14) for n > 14.
G.f.: x^2*(1 + x + x^2 - x^3 + x^4 - 2*x^5 + 2*x^6)/((1 - x)^6*(1 + x)^2*(1 + x^2)*(1 + x + x^2)^2).