cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328683 Positive integers that are equal to 99...99 (repdigit with n digits 9) times the sum of their digits.

Original entry on oeis.org

81, 1782, 26973, 359964, 4499955, 53999946, 629999937, 7199999928, 80999999919, 899999999910, 9899999999901, 107999999999892, 1169999999999883, 12599999999999874, 134999999999999865, 1439999999999999856, 15299999999999999847, 161999999999999999838
Offset: 1

Views

Author

Bernard Schott, Feb 25 2020

Keywords

Comments

The idea of this sequence comes from a problem during the annual Moscow Mathematical Olympiad (MMO) in 2001 (see reference).

Examples

			359964 = 36 * 9999 and the digital sum of 359964 = 36 , so 359964 = a(4).
		

References

  • Roman Fedorov, Alexei Belov, Alexander Kovaldzhi, Ivan Yashchenko, Moscow Mathematical Olympiads, 2000-2005, Level B, Problem 5, 2001, MSRI, 2011, p. 8 and 70/71.

Crossrefs

Programs

  • Maple
    C:=seq(9*n*(10^n-1),n=1..20);
  • Mathematica
    Table[9*n*(10^n - 1), {n, 1, 18}] (* Amiram Eldar, Feb 25 2020 *)
    LinearRecurrence[{22,-141,220,-100},{81,1782,26973,359964},20] (* Harvey P. Dale, Feb 02 2025 *)
  • PARI
    Vec(81*x*(1 - 10*x^2) / ((1 - x)^2*(1 - 10*x)^2) + O(x^20)) \\ Colin Barker, Feb 25 2020

Formula

a(n) = 9 * n * (10^n - 1).
From Colin Barker, Feb 25 2020: (Start)
G.f.: 81*x*(1 - 10*x^2) / ((1 - x)^2*(1 - 10*x)^2).
a(n) = 22*a(n-1) - 141*a(n-2) + 220*a(n-3) - 100*a(n-4) for n>4.
(End)
From Michel Marcus, Feb 25 2020: (Start)
a(n) = 9*A110807(n).
a(n) = n*A086580(n). (End)