cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328722 Dirichlet g.f.: 1 / zeta(s-1)^2.

Original entry on oeis.org

1, -4, -6, 4, -10, 24, -14, 0, 9, 40, -22, -24, -26, 56, 60, 0, -34, -36, -38, -40, 84, 88, -46, 0, 25, 104, 0, -56, -58, -240, -62, 0, 132, 136, 140, 36, -74, 152, 156, 0, -82, -336, -86, -88, -90, 184, -94, 0, 49, -100, 204, -104, -106, 0, 220, 0, 228, 232, -118, 240
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 26 2019

Keywords

Comments

Dirichlet inverse of A038040.
Dirichlet convolution of A055615 with itself.
Moebius transform of A101035.

Crossrefs

Cf. A007427, A008683, A038040, A046099 (positions of 0's), A055615, A101035.

Programs

  • Mathematica
    a[1] = 1; a[n_] := -Sum[(n/d) DivisorSigma[0, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 60}]
    Table[n DivisorSum[n, MoebiusMu[n/#] MoebiusMu[#] &], {n, 1, 60}]
    f[p_, e_] := Switch[e, 1, -2*p, 2, p^2, , 0]; a[1] = 1; a[n] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2023 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p*X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 22 2021
    
  • PARI
    A007427(n) = if(n<1, 0, sumdiv(n, d, moebius(d) * moebius(n/d))); \\ From A007427
    A328722(n) = (n*A007427(n)); \\ Antti Karttunen, Nov 15 2021

Formula

a(1) = 1; a(n) = -Sum_{d|n, dA038040(n/d) * a(d).
a(n) = n * A007427(n).
a(n) = Sum_{d|n} mu(n/d) * A101035(d).
Multiplicative with a(p) = -2*p, a(p^2) = p^2, and a(p) = 0 for e >= 3. - Amiram Eldar, Sep 15 2023