cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328744 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^q(k), where q(k) = number of partitions of k into distinct parts (A000009).

Original entry on oeis.org

1, 1, 2, 2, 3, 6, 5, 8, 9, 13, 12, 23, 18, 27, 33, 39, 38, 63, 54, 80, 86, 101, 104, 161, 145, 183, 208, 254, 256, 361, 340, 435, 472, 550, 600, 776, 760, 918, 1018, 1221, 1260, 1576, 1610, 1929, 2129, 2408, 2590, 3172, 3274, 3833, 4173, 4783, 5120, 6054, 6414, 7414, 8025
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 26 2019

Keywords

Comments

Number of ways to write n as an orderless product of orderless sums with distinct factors and each sum composed of distinct parts. Compare A318949.

Examples

			The a(4) = 2 ways: (4), (3+1).
The a(6) = 6 ways: (6), (4+2), (5+1), (3+2+1), (2)*(3), (2)*(2+1).
		

Crossrefs

Programs

  • PARI
    MultWeighT(u)={my(n=#u, v=vector(n, k, k==1)); for(k=2, n, if(u[k], my(m=logint(n,k), p=(1 + x + O(x*x^m))^u[k], w=vector(n)); for(i=0, m, w[k^i]=polcoef(p,i)); v=dirmul(v,w))); v}
    seq(n)={MultWeighT(Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)) - 1))} \\ Andrew Howroyd, Oct 27 2019