A328744 Dirichlet g.f.: Product_{k>=2} (1 + k^(-s))^q(k), where q(k) = number of partitions of k into distinct parts (A000009).
1, 1, 2, 2, 3, 6, 5, 8, 9, 13, 12, 23, 18, 27, 33, 39, 38, 63, 54, 80, 86, 101, 104, 161, 145, 183, 208, 254, 256, 361, 340, 435, 472, 550, 600, 776, 760, 918, 1018, 1221, 1260, 1576, 1610, 1929, 2129, 2408, 2590, 3172, 3274, 3833, 4173, 4783, 5120, 6054, 6414, 7414, 8025
Offset: 1
Keywords
Examples
The a(4) = 2 ways: (4), (3+1). The a(6) = 6 ways: (6), (4+2), (5+1), (3+2+1), (2)*(3), (2)*(2+1).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Programs
-
PARI
MultWeighT(u)={my(n=#u, v=vector(n, k, k==1)); for(k=2, n, if(u[k], my(m=logint(n,k), p=(1 + x + O(x*x^m))^u[k], w=vector(n)); for(i=0, m, w[k^i]=polcoef(p,i)); v=dirmul(v,w))); v} seq(n)={MultWeighT(Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)) - 1))} \\ Andrew Howroyd, Oct 27 2019
Comments