A328773 Irregular triangle read by rows: T(n,k) is the number of colored digraphs on n nodes with color scheme given by the partitions of n in canonical ordering.
1, 1, 3, 4, 16, 36, 64, 218, 752, 1104, 2112, 4096, 9608, 45960, 90416, 178944, 266496, 528384, 1048576, 1540944, 9133760, 22692704, 45277312, 30194176, 90196736, 180011008, 135032832, 269500416, 537919488, 1073741824
Offset: 0
Examples
The sequence begins: 1; 1; 3, 4; 16, 36, 64; 218, 752, 1104, 2112, 4096; 9608, 45960, 90416, 178944, 266496, 528384, 1048576; ... For n = 3, the three partitions of n are [3], [2, 1] and [1, 1, 1]. T(n,1) = 16 gives the number of colored digraphs with all nodes having the same color; T(n, 2) = 36 gives the number of colored digraphs with two nodes having the first color and one node having the second color; T(n, 3) gives the number of colored digraphs with each node having its own color. For n = 5, k = 4 the required partition is [3,1,1]. T(5,4) = 178944 is then the number of colored digraphs with 5 nodes, where 3 nodes have the first color and the other two nodes each has its own color.
References
- N. G. de Bruijn, Pólyas Abzähl-Theorie: Muster für Graphen und chemische Verbindungen, Selecta Mathematica III, Springer-Verlag (1971), 1-55.
Links
- Peter Dolland, Table of n, a(n) for n = 0..138 (rows 0..10)
- OEIS Wiki, Orderings of partitions (a comparison).
Crossrefs
Programs
-
PARI
\\ here C(p) computes sequence value for given partition. permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m} edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i]-1)} C(p)={((i,v)->if(i>#p, 2^edges(v), my(s=0); forpart(q=p[i], s+=permcount(q)*self()(i+1, concat(v,Vec(q)))); s/p[i]!))(1, [])} Row(n)={apply(C, vecsort([Vecrev(p) | p<-partitions(n)], ,4))} { for(n=0, 6, print(Row(n))) } \\ Andrew Howroyd, Nov 02 2019
Comments