cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A353923 Product_{n>=1} (1 + a(n)*x^n) = 1 + Sum_{n>=1} tau(n)*x^n, where tau = A000005.

Original entry on oeis.org

1, 2, 0, 3, -1, -1, -1, 9, 1, -7, 0, 4, -1, -19, 2, 94, -2, -57, 2, 81, -4, -186, 3, 226, 3, -632, -2, 1040, 1, -2060, -15, 10975, 17, -7720, -1, 13980, 9, -27595, -18, 50432, -10, -97582, 24, 191827, -17, -364695, 27, 580609, -37, -1338741, 45, 2658068, -11, -4909146, -98
Offset: 1

Views

Author

Ilya Gutkovskiy, May 11 2022

Keywords

Crossrefs

Programs

  • Mathematica
    A[m_, n_] := A[m, n] = Which[m == 1, DivisorSigma[0, n], m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1] A[m, n - m + 1]]; a[n_] := A[n, n]; a /@ Range[1, 55]

Formula

Product_{n>=1} (1 + a(n)*x^n) = 1 + Sum_{n>=1} x^n / (1 - x^n).

A353945 Product_{n>=1} 1 / (1 - a(n)*x^n) = 1 + Sum_{n>=1} tau(n)*x^n, where tau = A000005.

Original entry on oeis.org

1, 1, 0, 0, -1, 1, -1, 0, 1, -2, 0, 1, -1, -2, 2, 1, -2, -2, 2, 0, -4, 0, 3, -3, 3, -3, -2, -1, 1, 8, -15, 0, 17, -14, -1, -3, 9, -5, -18, 23, -10, -18, 24, -17, -17, 18, 27, -48, -37, 72, 45, -119, -11, 148, -98, -28, 65, -57, 24, -95, 213, -363, -173, 704, -435
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2022

Keywords

Crossrefs

Programs

  • Mathematica
    A[m_, n_] := A[m, n] = Which[m == 1, DivisorSigma[0, n], m > n >= 1, 0, True, A[m - 1, n] - A[m - 1, m - 1] A[m - 1, n - m + 1]]; a[n_] := A[n, n]; a /@ Range[1, 65]

Formula

Product_{n>=1} 1 / (1 - a(n)*x^n) = 1 + Sum_{n>=1} x^n / (1 - x^n).
Showing 1-2 of 2 results.