cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328779 a(n) is the number of unlabeled unrooted trees (as in A000055) on n nodes with one designated node (exclusive) or one designated edge.

Original entry on oeis.org

0, 1, 2, 3, 7, 15, 36, 85, 211, 525, 1341, 3449, 9001, 23671, 62835, 167881, 451557, 1221065, 3318737, 9059397, 24830110, 68299159, 188488448, 521737636, 1448154837, 4029712400, 11239492056, 31416403198, 87990722479, 246903542031, 694022911203, 1954012196966
Offset: 0

Views

Author

Geoffrey Critzer, Jul 06 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, n, (add(b(n-j)*add(
          d*b(d), d=numtheory[divisors](j)), j=1..n-1))/(n-1))
        end:
    a:= n-> b(n)+add(b(j)*b(n-j), j=0..n)/2+`if`(n::even, b(n/2)/2, 0):
    seq(a(n), n=0..31);  # Alois P. Heinz, Feb 17 2024
  • Mathematica
    nn = 25; f[x_] := Sum[a[n] x^n, {n, 0, nn}]; sol = SolveAlways[
      0 == Series[f[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}], x];
    r[x_] := Sum[a[n] x^n, {n, 0, nn}] /. sol; CoefficientList[Series[r[x] + r[x]^2/2 + r[x^2]/2, {x, 0, nn}], x]

Formula

O.g.f.: R(x) + R(x)^2/2 + R(x^2)/2 where R(x) is the o.g.f. for A000081.