cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328790 Expansion of (chi(x) / chi(-x^6))^2 in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 1, 2, 4, 4, 7, 10, 11, 16, 21, 24, 34, 44, 50, 66, 84, 98, 125, 156, 181, 226, 277, 322, 397, 480, 557, 674, 807, 936, 1121, 1330, 1538, 1824, 2146, 2476, 2915, 3408, 3918, 4578, 5322, 6104, 7090, 8198, 9375, 10830, 12464, 14214, 16345, 18734, 21303
Offset: 0

Views

Author

Michael Somos, Oct 27 2019

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution square of A328796.
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 1/2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A328797.

Examples

			G.f. = 1 + 2*x + x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 7*x^6 + 10*x^7 + ...
G.f. = q^5 + 2*q^17 + q^29 + 2*q^41 + 4*q^53 + 4*q^65 + 7*q^77 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -x, x^2] QPochhammer[ -x^6, x^6])^2, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^12 + A))^2 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A))^2, n))};

Formula

Expansion of q^(-5/12) * (eta(q^2)^2 * eta(q^12))^2 / (eta(q) * eta(q^4) * eta(q^6))^2 in power of q.
Euler transform of period 12 sequence [2, -2, 2, 0, 2, 0, 2, 0, 2, -2, 2, 0, ...].
G.f.: Product_{k>=1} (1 + x^(2*k-1))^2 * (1 + x^(6*k))^2.
a(n) = A112206(2*n + 1).
a(n) ~ exp(2*Pi*sqrt(n)/3) / (4*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Oct 31 2019