cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A112206 Coefficients of replicable function number "72b".

Original entry on oeis.org

1, 1, 0, 2, 2, 1, 2, 2, 3, 4, 4, 4, 7, 7, 6, 10, 11, 11, 14, 16, 17, 21, 22, 24, 32, 34, 34, 44, 49, 50, 60, 66, 72, 84, 90, 98, 117, 125, 132, 156, 171, 181, 206, 226, 245, 277, 298, 322, 369, 397, 422, 480, 522, 557, 620, 674, 728, 807, 868, 936, 1043, 1121, 1198
Offset: 0

Views

Author

Michael Somos, Aug 28 2005

Keywords

Comments

From Michael Somos, Oct 28 2019: (Start)
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution squared is A112173.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = f(t) where q = exp(2 Pi i t).
Given G.f. A(x), then B(q) = q^(-1) * A(q^6) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = 2 + (u^2 - v)*v*w^2 + (u^2 + v)*v^2.
(End)

Examples

			G.f. = 1 + x + 2*x^3 + 2*x^4 + x^5 + 2*x^6 + 2*x^7 + 3*x^8 + ...
G.f. = q^-1 + q^5 + 2*q^17 + 2*q^23 + q^29 + 2*q^35 + 2*q^41 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 + x^k)*(1 + x^(3*k)) / ((1 + x^(2*k))*(1 + x^(6*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
    eta[q_]:= q^(1/24)*QPochhammer[q]; h:= q^(1/6)*((eta[q^2]*eta[q^6])^2/(eta[q]*eta[q^3]*eta[q^4]*eta[q^12])); a:= CoefficientList[Series [h, {q,0,60}], q]; Table[a[[n]], {n,1,50}] (* G. C. Greubel, Jun 01 2018 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ -x^3, x^6], {x, 0 ,n}]; (* Michael Somos, Oct 28 2019 *)
  • PARI
    q='q+O('q^50); h=((eta(q^2)*eta(q^6))^2/(eta(q)*eta(q^3)*eta(q^4) *eta(q^12))); Vec(h) \\ G. C. Greubel, Jun 01 2018
    
  • PARI
    {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A))^2 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A)), n))}; /* Michael Somos, Oct 28 2019 */

Formula

a(n) ~ exp(sqrt(2*n)*Pi/3) / (2^(5/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
Expansion of q^(1/6)*((eta(q^2)*eta(q^6))^2/(eta(q)*eta(q^3)*eta(q^4) *eta(q^12))) in powers of q. - G. C. Greubel, Jun 01 2018
From Michael Somos, Oct 28 2019: (Start)
Expansion of chi(x) * chi(x^3) in powers of x where chi() is a Ramanujan theta function.
Euler transform of period 12 sequence [1, -1, 2, 0, 1, -2, 1, 0, 2, -1, 1, 0, ...].
G.f.: Product_{k>=0} (1 + x^(2*k + 1)) * (1 + x^(6*k + 3)).
a(n) = (-1)^n * A112175(n). a(2*n) = A328789(n). a(2*n + 1) = A328790(n).
(End)

A328795 Expansion of (chi(x) * chi(-x^3))^2 in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 1, 0, 0, 2, 2, 0, 2, 2, 1, 0, 2, 6, 2, 0, 3, 6, 4, 0, 4, 8, 4, 0, 7, 14, 7, 0, 6, 16, 10, 0, 11, 20, 11, 0, 14, 32, 16, 0, 17, 38, 21, 0, 22, 46, 24, 0, 32, 66, 34, 0, 34, 78, 44, 0, 49, 96, 50, 0, 60, 130, 66, 0, 72, 154, 84, 0, 90, 186, 98, 0, 117, 244
Offset: 0

Views

Author

Michael Somos, Oct 28 2019

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution square of A328802.
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A328789.

Examples

			G.f. = 1 + 2*x + x^2 + 2*x^5 + 2*x^6 + 2*x^8 + 2*x^9 + x^10 + ...
G.f. = q^-1 + 2*q^2 + q^5 + 2*q^14 + 2*q^17 + 2*q^23 + 2*q^26 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -x, x^2] QPochhammer[ x^3, x^6])^2, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^3 + A))^2 / (eta(x+ A) * eta(x^4 + A) * eta(x^6 + A))^2, n))};

Formula

Euler transform of period 12 sequence [2, -2, 0, 0, 2, -2, 2, 0, 0, -2, 2, 0, ...].
G.f.: Product_{k>=1} (1 + x^(2*k-1))^2 * (1 - x^(6*k-3))^2.
a(n) = (-1)^n * A328797(n). a(2*n) = A112206(n).
a(4*n) = A328789(n). a(4*n + 1) = 2 * A328798(n). a(4*n + 2) = A328790(n). a(4*n + 3) = 0.

A328796 Expansion of chi(x) / chi(-x^6) in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 8, 8, 11, 12, 12, 16, 17, 18, 23, 25, 26, 32, 35, 37, 45, 49, 52, 62, 67, 72, 85, 92, 98, 114, 124, 133, 153, 166, 178, 203, 220, 236, 268, 290, 311, 350, 379, 407, 456, 493, 529, 589, 636, 683, 758, 818, 877
Offset: 0

Views

Author

Michael Somos, Oct 27 2019

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution square is A328790.
G.f. is a period 1 Fourier series which satisfies f(-1 / (1728 t)) = 2^(-1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A328880.

Examples

			G.f. = 1 + x + x^3 + x^4 + x^5 + 2*x^6 + 2*x^7 + 2*x^8 + 3*x^9 + ...
G.f. = q^5 + q^29 + q^77 + q^101 + q^125 + 2*q^149 + 2*q^173 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ -x^6, x^6], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^12 + A)) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)), n))};

Formula

Expansion of q^(-5/24) * (eta(q^2)^2 * eta(q^12)) / (eta(q) * eta(q^4) * eta(q^6)) in power of q.
Euler transform of period 12 sequence [1, -1, 1, 0, 1, 0, 1, 0, 1, -1, 1, 0, ...].
G.f.: Product_{k>=1} (1 + x^(6*k))/(1 + (-x)^k) = Product_{k>=1} (1 + x^(2*k-1)) * (1 + x^(6*k)).
A261736(n) = (-1)^n * a(n).
a(n) ~ exp(sqrt(2*n)*Pi/3) / (2^(7/4)*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Oct 31 2019

A328797 Expansion of (chi(-x) * chi(x^3))^2 in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 1, 0, 0, -2, 2, 0, 2, -2, 1, 0, 2, -6, 2, 0, 3, -6, 4, 0, 4, -8, 4, 0, 7, -14, 7, 0, 6, -16, 10, 0, 11, -20, 11, 0, 14, -32, 16, 0, 17, -38, 21, 0, 22, -46, 24, 0, 32, -66, 34, 0, 34, -78, 44, 0, 49, -96, 50, 0, 60, -130, 66, 0, 72, -154, 84, 0, 90, -186
Offset: 0

Views

Author

Michael Somos, Oct 27 2019

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution square of A328800.
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A328790.

Examples

			G.f. = 1 - 2*x + x^2 - 2*x^5 + 2*x^6 + 2*x^8 - 2*x^9 + x^10 + ...
G.f. = q^-1 - 2*q^2 + q^5 - 2*q^14 + 2*q^17 + 2*q^23 - 2*q^26 + ..
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x, x^2] QPochhammer[ -x^3, x^6])^2, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^6 + A)^2)^2 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A))^2, n))};

Formula

Expansion of q^(1/3) * (eta(q) * eta(q^6)^2)^2 / (eta(q^2) * eta(q^3) * eta(q^12))^2 in powers of q.
Euler transform of period 12 sequence [-2, 0, 0, 0, -2, -2, -2, 0, 0, 0, -2, 0, ...].
G.f.: Product_{k>=1} (1 - x^(2*k-1))^2 * (1 + x^(6*k-3))^2.
a(n) = (-1)^n * A328795(n). a(2*n) = A112206(n).
a(4*n) = A328789(n). a(4*n + 1) = -2 * A328798(n). a(4*n + 2) = A328790(n). a(4*n + 3) = 0.
Showing 1-4 of 4 results.