cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328802 Expansion of chi(x) * chi(-x^3) in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 2, 0, 0, 2, 2, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 5, 5, 0, 0, 4, 5, 0, 0, 6, 5, 0, 0, 7, 7, 0, 0, 7, 8, 0, 0, 8, 8, 0, 0, 11, 11, 0, 0, 10, 12, 0, 0, 13, 12, 0, 0, 15
Offset: 0

Views

Author

Michael Somos, Oct 28 2019

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution square is A328795.
G.f. is a period 1 Fourier series which satisfies f(-1 / (1728 t)) = 2^(1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A097242.

Examples

			G.f. = 1 + x + x^5 + x^8 + x^12 + x^13 + x^16 + x^17 + x^20 + ...
G.f. = q^-1 + q^5 + q^29 + q^47 + q^71 + q^77 + q^95 + q^101 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ x^3, x^6], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^3 + A)) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)), n))};

Formula

Expansion of q^(1/6) * (eta(q^2)^2 * eta(q^3)) / (eta(q) * eta(q^4) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [1, -1, 0, 0, 1, -1, 1, 0, 0, -1, 1, 0, ...].
G.f.: Product_{k>=1} (1 + x^(2*k-1)) * (1 - x^(6*k-3)).
a(n) = (-1)^n * A328800. a(4*n) = A097242(n). a(4*n + 1) = A328796(n). a(4*n + 2) = a(4*n + 3) = 0.