A328802 Expansion of chi(x) * chi(-x^3) in powers of x where chi() is a Ramanujan theta function.
1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 2, 0, 0, 2, 2, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 5, 5, 0, 0, 4, 5, 0, 0, 6, 5, 0, 0, 7, 7, 0, 0, 7, 8, 0, 0, 8, 8, 0, 0, 11, 11, 0, 0, 10, 12, 0, 0, 13, 12, 0, 0, 15
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^5 + x^8 + x^12 + x^13 + x^16 + x^17 + x^20 + ... G.f. = q^-1 + q^5 + q^29 + q^47 + q^71 + q^77 + q^95 + q^101 + ...
Links
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ x^3, x^6], {x, 0, n}];
-
PARI
{a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^3 + A)) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)), n))};
Formula
Expansion of q^(1/6) * (eta(q^2)^2 * eta(q^3)) / (eta(q) * eta(q^4) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [1, -1, 0, 0, 1, -1, 1, 0, 0, -1, 1, 0, ...].
G.f.: Product_{k>=1} (1 + x^(2*k-1)) * (1 - x^(6*k-3)).
Comments