A328817 Numbers k such that at least 7 of k, k+1, ..., k+9 are divisible by their least prime factor squared.
3475, 18271, 25524, 25623, 45616, 55772, 72471, 72472, 104419, 121667, 133223, 133224, 149220, 164975, 165568, 165571, 172916, 180167, 180168, 203979, 203980, 219123, 260424, 261472, 261475, 334516, 334519, 364216, 381267, 393320, 393323, 402723, 412524, 420467, 420468
Offset: 1
Keywords
Examples
203980 is a member since 2^2 | 203980, 37^2 | 203981, 13^2 | 203983, 2^2 | 203984, 3^2 | 203985, 7^2 | 203987, and 2^2 | 203988.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 600 terms from Harvey P. Dale)
Crossrefs
Cf. A283050.
Programs
-
Mathematica
Flatten[Position[Partition[Table[If[Divisible[n,FactorInteger[n][[1,1]]^2],1,0],{n,420000}],10,1],?(Total[#]>6&)]] (* _Harvey P. Dale, Jan 02 2021 *)
-
PARI
upto(n) = {my(l, c, res); l = List([0,0,0,1,0,0,0,1,1,0]); c = 3; res = List(); for(i = 11, n, f = factor(i)[,2]; c -= l[1]; listpop(l, 1); if(f[1] >= 2, c++; listput(l, 1) , listput(l, 0) ); if(c >= 7, listput(res, i-9); ) ); res } \\ David A. Corneth, Jan 02 2021