cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A276156 Numbers obtained by reinterpreting base-2 representation of n in primorial base: a(0) = 0, a(2n) = A276154(a(n)), a(2n+1) = 1 + A276154(a(n)).

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 30, 31, 32, 33, 36, 37, 38, 39, 210, 211, 212, 213, 216, 217, 218, 219, 240, 241, 242, 243, 246, 247, 248, 249, 2310, 2311, 2312, 2313, 2316, 2317, 2318, 2319, 2340, 2341, 2342, 2343, 2346, 2347, 2348, 2349, 2520, 2521, 2522, 2523, 2526, 2527, 2528, 2529, 2550, 2551, 2552, 2553, 2556, 2557, 2558, 2559, 30030, 30031
Offset: 0

Views

Author

Antti Karttunen, Aug 24 2016

Keywords

Comments

Numbers that are sums of distinct primorial numbers, A002110.
Numbers with no digits larger than one in primorial base, A049345.

Crossrefs

Complement of A177711.
Subsequences: A328233, A328832, A328462 (odd bisection).
Conjectured subsequences: A328110, A380527.
Fixed points of A328841, positions of zeros in A328828, A328842, and A329032, positions of ones in A328581, A328582, and A381032.
Positions of terms < 2 in A328114.
Indices where A327860 and A329029 coincide.
Cf. also table A328464 (and its rows).

Programs

  • Mathematica
    nn = 65; b = MixedRadix[Reverse@ Prime@ Range[IntegerLength[nn, 2] - 1]]; Table[FromDigits[IntegerDigits[n, 2], b], {n, 0, 65}] (* Version 10.2, or *)
    Table[Total[Times @@@ Transpose@ {Map[Times @@ # &, Prime@ Range@ Range[0, Length@ # - 1]], Reverse@ #}] &@ IntegerDigits[n, 2], {n, 0, 65}] (* Michael De Vlieger, Aug 26 2016 *)
  • PARI
    A276156(n) = { my(s=0, p=1, r=1); while(n, if(n%2, s += r); n>>=1; p = nextprime(1+p); r *= p); (s); }; \\ Antti Karttunen, Feb 03 2022
  • Python
    from sympy import prime, primorial, primepi, factorint
    from operator import mul
    def a002110(n): return 1 if n<1 else primorial(n)
    def a276085(n):
        f=factorint(n)
        return sum([f[i]*a002110(primepi(i) - 1) for i in f])
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) # after Chai Wah Wu
    def a(n): return 0 if n==0 else a276085(a019565(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 23 2017
    

Formula

a(0) = 0, a(2n) = A276154(a(n)), a(2n+1) = 1+A276154(a(n)).
Other identities. For all n >= 0:
a(n) = A276085(A019565(n)).
A049345(a(n)) = A007088(n).
A257993(a(n)) = A001511(n).
A276084(a(n)) = A007814(n).
A051903(a(n)) = A351073(n).

A328832 Numbers that are sums of distinct primorial numbers, A002110, and do not have a factor of the form p^p.

Original entry on oeis.org

1, 2, 3, 6, 7, 9, 30, 31, 33, 37, 38, 39, 210, 211, 213, 217, 218, 219, 241, 242, 246, 247, 249, 2310, 2311, 2313, 2317, 2318, 2319, 2341, 2342, 2343, 2346, 2347, 2521, 2522, 2523, 2526, 2527, 2529, 2550, 2551, 2553, 2557, 2558, 2559, 30030, 30031, 30033, 30037, 30038, 30039, 30061, 30062, 30063, 30066, 30067, 30069, 30241
Offset: 1

Views

Author

Antti Karttunen, Oct 30 2019

Keywords

Comments

Numbers n such that A129251(n) = 0 and A328828(n) = 0 (or equally, A328114(n) = 1).
Terms k in A276156 for which A276086(A276085(k)) = k, i.e., those terms of A276156 which are in the range of A276086.

Crossrefs

Programs

  • PARI
    A129251(n) = { my(f = factor(n)); sum(k=1, #f~, (f[k, 2]>=f[k, 1])); };
    A328828(n) = { my(i=1, p=2); while(n, if((n%p)>1, return(i)); i++; n = n\p; p = nextprime(1+p)); (0); };
    isA328832(n) = ((0==A129251(n)) && (0==A328828(n)));
    
  • PARI
    A276156(n) = { my(p=2,pr=1,s=0); while(n,if(n%2,s += pr); n >>= 1; pr *= p; p = nextprime(1+p)); (s); };
    k=0; for(n=1,(2^15)-1, if(!A129251(u=A276156(n)), k++; write("b328832.txt", k, " ", u, " ")));

Formula

a(n) = A276086(A328833(n)).

A328844 a(n) = A328842(A276086(n)).

Original entry on oeis.org

0, 0, 0, 0, 0, 12, 2, 2, 6, 0, 6, 60, 18, 12, 36, 120, 6, 210, 92, 2, 126, 510, 876, 2010, 378, 1002, 1626, 1200, 3066, 8700, 0, 6, 12, 6, 30, 90, 2, 32, 66, 0, 66, 420, 138, 102, 276, 840, 1326, 630, 632, 1502, 66, 2730, 5316, 13230, 1818, 6192, 10566, 23730, 6996, 46200, 12, 60, 108, 48, 222, 636, 2, 242, 486, 1260, 1956, 1890, 978, 102
Offset: 0

Views

Author

Antti Karttunen, Oct 30 2019

Keywords

Crossrefs

Cf. A328836 (positions of zeros).

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A328842(n) = { my(p=2, r=1, s=0); while(n, if((n%p)>0, s += ((n%p)-1)*r); r *= p; n = n\p; p = nextprime(1+p)); (s); };
    A328844(n) = A328842(A276086(n));

Formula

a(n) = A328842(A276086(n)).
a(n) = A276086(n) - A328843(n).

A328829 Index of the least significant digit > 1 in the primorial base expansion of A276086(n), 0 if no such digit exists.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 2, 2, 3, 0, 3, 4, 3, 3, 3, 4, 3, 5, 2, 2, 3, 4, 3, 4, 3, 3, 3, 4, 3, 4, 0, 3, 3, 3, 4, 4, 2, 2, 3, 0, 3, 5, 3, 3, 3, 5, 3, 5, 2, 2, 3, 5, 3, 5, 3, 3, 3, 5, 3, 6, 3, 4, 3, 3, 3, 3, 2, 2, 3, 5, 3, 5, 3, 3, 3, 5, 3, 5, 2, 2, 3, 5, 3, 5, 3, 3, 3, 5, 3, 5, 3, 3, 4, 3, 3, 3, 2, 2, 3, 5, 3, 5, 3, 3, 3, 5
Offset: 0

Views

Author

Antti Karttunen, Oct 29 2019

Keywords

Comments

a(n) = index of the least non-unitary prime divisor of A276087(n) or 0 if no such prime-divisor exists.

Crossrefs

Cf. A276086, A276087, A277885, A328828, A328836 (positions of zeros).

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A328828(n) = { my(i=1, p=2); while(n, if((n%p)>1, return(i)); i++; n = n\p; p = nextprime(1+p)); (0); };
    A328829(n) = A328828(A276086(n));
    
  • PARI
    A277885(n) = if(1==n,0,my(f=factor(n)); for(i=1,#f~,if(f[i,2]>1,return(primepi(f[i,1])))); (0));
    A328829(n) = A277885(A276086(A276086(n)));

Formula

a(n) = A328828(A276086(n)) = A277885(A276087(n)).

A328833 A276085 applied to the intersection of A048103 (p^p-free numbers) and A276156 (sums of distinct primorials).

Original entry on oeis.org

0, 1, 2, 3, 30, 4, 9, 6469693230, 212, 200560490130, 510511, 2312, 39, 7799922041683461553249199106329813876687996789903550945093032474868511536164700810, 7858321551080267055879092, 6469693260, 2566376117594999414479597815340071648394471, 557940830126698960967415392, 1062411448280052319722448549835623701226301211611796930357321893850294264731624591303255041960530, 421, 7420738134813, 512820, 3217644767340672907899084554132, 249
Offset: 1

Views

Author

Antti Karttunen, Oct 30 2019

Keywords

Crossrefs

Cf. A328836 (same terms, sorted into ascending order).
Cf. A328313 (a subsequence).

Programs

  • PARI
    A129251(n) = { my(f = factor(n)); sum(k=1, #f~, (f[k, 2]>=f[k, 1])); };
    A328828(n) = { my(i=1, p=2); while(n, if((n%p)>1, return(i)); i++; n = n\p; p = nextprime(1+p)); (0); };
    isA328832(n) = ((0==A129251(n)) && (0==A328828(n)));
    A002110(n) = prod(i=1,n,prime(i));
    A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };
    for(n=1,32768,if(isA328832(n),print1(A276085(n),", ")));

Formula

a(n) = A276085(A328832(n)).

A328837 Numbers k for which A328403(k) = A276086(A276086(A276086(k))) is squarefree.

Original entry on oeis.org

0, 1, 2, 4, 9, 2312
Offset: 1

Views

Author

Antti Karttunen, Oct 30 2019

Keywords

Comments

Numbers k such that A276086(k) is in A328836, or equally, that A276087(k) is in A276156, i.e., numbers k for which A328828(A276087(k)) is zero, that is, numbers k such that in the primorial base expansion of A276087(k) there are no digits larger than 1.
All the terms of A328313 are also included in this sequence. Questions: Is that sequence finite? Even if it is, is this one also? Are there any terms here between 2312 and 3217644767340672907899084554132? Are there only finitely many numbers k for which A328828(A328403(k)) is zero? (See comments in A328398.)

Crossrefs

Positions of ones in A328394. See also comments in A328398.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A328828(n) = { my(i=1, p=2); while(n, if((n%p)>1, return(i)); i++; n = n\p; p = nextprime(1+p)); (0); };
    isA328837(n) = !A328828(A276086(A276086(n)));
Showing 1-6 of 6 results.