cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328847 Number of terms in Zeckendorf expansion needed to write the first Fibonacci based variant of arithmetic derivative of n.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 2, 1, 3, 3, 2, 1, 3, 1, 4, 3, 3, 1, 4, 1, 3, 4, 4, 1, 3, 3, 3, 4, 4, 1, 3, 1, 4, 3, 5, 3, 3, 1, 5, 4, 3, 1, 4, 1, 3, 3, 4, 1, 3, 4, 3, 3, 6, 1, 5, 3, 4, 5, 4, 1, 3, 1, 5, 3, 4, 4, 2, 1, 5, 6, 2, 1, 3, 1, 4, 3, 5, 5, 5, 1, 3, 5, 5, 1, 3, 7, 5, 4, 3, 1, 3, 5, 5, 5, 4, 6, 4, 1, 3, 4, 5, 1, 7, 1, 6, 5
Offset: 0

Views

Author

Antti Karttunen, Oct 28 2019

Keywords

Crossrefs

Programs

  • PARI
    A328845(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(f[i,1])/f[i, 1]));
    A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); }
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A328847(n) = A007895(A328845(n));

Formula

a(n) = A007895(A328845(n)).
a(p) = 1 for all primes p.