A328848 Number of terms in Zeckendorf expansion needed to write the second Fibonacci based variant of arithmetic derivative of n.
0, 0, 1, 1, 1, 1, 3, 1, 2, 2, 3, 1, 2, 1, 3, 3, 3, 1, 4, 1, 2, 3, 3, 1, 3, 3, 2, 3, 5, 1, 2, 1, 3, 4, 2, 4, 1, 1, 3, 2, 3, 1, 4, 1, 5, 5, 5, 1, 3, 3, 3, 3, 4, 1, 5, 4, 6, 4, 4, 1, 3, 1, 4, 5, 3, 3, 4, 1, 3, 4, 3, 1, 5, 1, 6, 4, 5, 3, 4, 1, 3, 3, 6, 1, 4, 3, 6, 6, 6, 1, 5, 3, 5, 5, 4, 5, 3, 1, 2, 5, 3, 1, 4, 1, 4, 3
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..20000
Programs
-
PARI
A328846(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(2+primepi(f[i,1]))/f[i, 1])); A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); } A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649 A328848(n) = A007895(A328846(n));