cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328851 Dirichlet g.f.: Product_{k>=2} 1 / (1 - k^(-s))^(k + 1).

Original entry on oeis.org

1, 3, 4, 11, 6, 19, 8, 34, 20, 29, 12, 78, 14, 39, 40, 104, 18, 107, 20, 120, 54, 59, 24, 277, 47, 69, 88, 162, 30, 237, 32, 299, 82, 89, 84, 478, 38, 99, 96, 429, 42, 321, 44, 246, 230, 119, 48, 921, 86, 258, 124, 288, 54, 535, 128, 581, 138, 149, 60, 1091
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 28 2019

Keywords

Comments

Number of ways to factor n into 3 kinds of 2, 4 kinds of 3, ..., k+1 kinds of k.
Dirichlet convolution of A001055 with A050367.

Crossrefs

Programs

  • PARI
    seq(n)={my(v=vector(n, k, k==1)); for(k=2, n, my(m=logint(n,k), p=1/(1 - x + O(x*x^m))^(1+k), w=vector(n)); for(i=0, m, w[k^i]=polcoef(p,i)); v=dirmul(v,w)); v} \\ Andrew Howroyd, Oct 28 2019

Formula

a(n) = Sum_{d|n} A001055(n/d) * A050367(d).