cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A348003 Indices k of records of low value of the ratios A348001(k)/A034444(k) between the number of distinct values of the unitary totient function applied to the unitary divisors of k and the number of unitary divisors of k.

Original entry on oeis.org

1, 2, 546, 2730, 13650, 101010, 199290, 996450, 1919190, 7373730, 28020174, 32626230, 125353410, 140100870, 700504350, 2381714790, 11908573950, 15270994830
Offset: 1

Views

Author

Amiram Eldar, Sep 23 2021

Keywords

Comments

The maximal possible value of the ratio A348001(k)/A034444(k) is 1 which occurs at the terms of A348004.
The rounded values of the corresponding record values are 1, 0.5, 0.438, 0.406, 0.375, 0.359, 0.344, 0.312, 0.281, 0.266, 0.258, 0.250, 0.242, 0.199, 0.195, 0.170, 0.168, 0.145, ...
a(19) > 2*10^10, if it exists.

Crossrefs

The unitary version of A328859.

Programs

  • Mathematica
    f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; r[n_] := Length @ Union[uphi /@ (d = Select[Divisors[n], CoprimeQ[#, n/#] &])]/Length[d]; rm = 2; seq = {}; Do[r1 = r[n]; If[r1 < rm, rm = r1; AppendTo[seq, n]], {n, 1, 10^5}]; seq

A348159 Indices k of records of low value in the ratios A348158(k)/k.

Original entry on oeis.org

1, 2, 126, 1638, 2394, 8190, 139230, 155610, 2645370, 5757570, 97878690, 420302610, 1963331370, 7145144370
Offset: 1

Views

Author

Amiram Eldar, Oct 03 2021

Keywords

Comments

The maximal possible value of the ratio A348158(k)/k is 1 which occurs at the terms of A326835.
The rounded values of the corresponding records are 1, 0.5, 0.452, 0.445, 0.437, 0.424, 0.420, 0.409, 0.404, 0.398, 0.3933, 0.3927, 0.3885, 0.3879, ...
a(15) <= 33376633290. - David A. Corneth, Oct 04 2021

Crossrefs

Programs

  • Mathematica
    r[n_] := Plus @@ DeleteDuplicates @ Map[EulerPhi, Divisors[n]]/n; rm = 2; s = {}; Do[If[(r1 = r[n]) < rm, rm = r1; AppendTo[s, n]], {n, 1, 2*10^5}]; s
  • PARI
    f(n) = vecsum(Set(apply(eulerphi, divisors(n)))); \\ A348158
    lista(nn) = {my(r=oo, x); for (i=1, nn, if ((x=f(i)/i) < r, print1(i, ", "); r = x););} \\ Michel Marcus, Oct 04 2021
Showing 1-2 of 2 results.