cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328905 Decimal expansion of the solution x = 0.56389552425993647949... to 1 + 2^x = 5^x.

Original entry on oeis.org

5, 6, 3, 8, 9, 5, 5, 2, 4, 2, 5, 9, 9, 3, 6, 4, 7, 9, 4, 9, 0, 3, 9, 2, 9, 4, 5, 9, 3, 7, 9, 5, 6, 5, 6, 5, 5, 1, 5, 2, 1, 1, 7, 3, 0, 5, 0, 9, 9, 5, 5, 2, 9, 8, 5, 9, 2, 8, 0, 8, 3, 8, 0, 1, 2, 0, 4, 6, 6, 2, 0, 0, 5, 2, 2, 8, 1, 9, 7, 3, 5, 5, 0, 4, 2
Offset: 0

Views

Author

M. F. Hasler, Oct 31 2019

Keywords

Examples

			0.5638955242599364794903929459379565655152117305099552985928083801204662005228...
		

Crossrefs

Cf. A329334 (continued fraction).
Cf. A242208 (1 + 2^x = 4^x), A328900 (2^x + 3^x = 4^x), A328904 (1 + 3^x = 5^x).

Programs

  • Mathematica
    RealDigits[x /. FindRoot[1 + 2^x == 5^x, {x, 1}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Jun 28 2023 *)
  • PARI
    print(c=solve(x=0,1, 1+2^x-5^x)); digits(c\.1^default(realprecision))[^-1] \\ [^-1] to discard possibly incorrect last digit. Use e.g. \p999 to get more digits. - M. F. Hasler, Oct 31 2019