A328940 Numbers k such that k divides A003754(k+1).
1, 2, 3, 23, 31, 61, 62, 173075, 259698, 332429, 2147535, 21217059, 72517101
Offset: 1
Examples
23 is in the sequence since the dual Zeckendorf representation of 23 is 101110 that equals 46 when read as a binary number, and 23|46.
Programs
-
Mathematica
fb[n_] := Module[{k = Ceiling[Log[GoldenRatio, n * Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; fr]; dz[n_] := Module[{v = fb[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i+1]] == 0 && v[[i+2]] == 0, v[[i]] = 0; v[[i+1]] = 1; v[[i+2]] = 1; If[i>2, i-=3]]; i++];i=Position[v,_?(#>0&)]; If[i=={},{0}, v[[i[[1,1]];;-1]]]]; aQ[n_] := Divisible[FromDigits[dz[n], 2], n]; Select[Range[100], aQ] (* after Robert G. Wilson v at A014417 and Ron Knott's Maple code at A104326 *)
Comments