cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A328945 Numbers m that are neither arithmetic (A003601) nor harmonic (A001599).

Original entry on oeis.org

2, 4, 8, 9, 10, 12, 16, 18, 24, 25, 26, 32, 34, 36, 40, 48, 50, 52, 58, 63, 64, 72, 74, 75, 76, 80, 81, 82, 84, 88, 90, 98, 100, 104, 106, 108, 112, 117, 120, 121, 122, 124, 128, 130, 136, 144, 146, 148, 152, 156, 160, 162, 170, 171, 172, 175, 176, 178, 180
Offset: 1

Views

Author

Jaroslav Krizek, Oct 31 2019

Keywords

Comments

Numbers m such that neither the arithmetic mean of the divisors of m nor the harmonic mean of the divisors of m is an integer.
Numbers m such that neither A(m) = A000203(m)/A000005(m) nor H(m) = m * A000005(m)/A000203(m) is an integer.
Corresponding values of A(m): 3/2, 7/3, 15/4, 13/3, 9/2, 14/3, 31/5, 13/2, 15/2, 31/3, 21/2, 21/2, 27/2, ...
Corresponding values of H(m): 4/3, 12/7, 32/15, 27/13, 20/9, 18/7, 80/31, 36/13, 16/5, 75/31, 52/21, 64/21, ...

Crossrefs

Programs

  • Magma
    [m: m in [1..10^5] | not IsIntegral(m * NumberOfDivisors(m) / SumOfDivisors(m)) and not IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m))]
    
  • Maple
    filter:= proc(n) local D,d,t;
      D:=numtheory:-divisors(n);
      d:= nops(D);
      convert(D,`+`) mod d <> 0 and not ((d/add(1/t,t=D))::integer)
    end proc:
    select(filter, [$1..200]); # Robert Israel, Dec 14 2023
  • Mathematica
    Select[Range[180], !Divisible[DivisorSigma[1, #], DivisorSigma[0, #]] && !Divisible[# * DivisorSigma[0, #], DivisorSigma[1, #]] &] (* Amiram Eldar, Nov 01 2019 *)
  • PARI
    isok(m) = my(f = factor(m), prd = sigma(f)/numdiv(f)); (denominator(prd) != 1) && (denominator(m/prd) != 1); \\ Michel Marcus, Nov 05 2019
Showing 1-1 of 1 results.