A328948 Number of primes that are a concatenation of two positive integers whose product is n.
1, 0, 2, 1, 0, 2, 2, 0, 1, 1, 0, 1, 2, 0, 2, 0, 0, 2, 1, 0, 3, 1, 0, 2, 1, 0, 2, 2, 0, 1, 2, 0, 3, 0, 0, 0, 1, 0, 2, 1, 0, 2, 1, 0, 1, 2, 0, 1, 2, 0, 3, 1, 0, 2, 0, 0, 3, 1, 0, 1, 0, 0, 4, 1, 0, 3, 1, 0, 2, 2, 0, 1, 1, 0, 1, 2, 0, 3, 1, 0, 2, 2, 0, 3, 0, 0, 1, 2, 0, 1, 3, 0, 3, 1, 0, 0
Offset: 1
Examples
1(11), 2(-), 3(13, 31), 4(41), 5(-), 6(23, 61), 7(17, 71), 8(-), 9(19), 10(101), 11(-), 12(43), 13(113, 131), 14(-), 15(53, 151), 16(-).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[#[a: d in Divisors(n)| IsPrime(a) where a is Seqint(Intseq(d) cat Intseq(n div d))]:n in [1..100]]; // Marius A. Burtea, Nov 05 2019
-
Maple
f:= proc(n) if n mod 3 = 2 then return 0 fi; nops(select(isprime, {seq(dcat(t,n/t), t = numtheory:-divisors(n))}) end proc: map(f, [$1..200]); # Robert Israel, Dec 14 2023
-
PARI
a(n) = sumdiv(n, d, isprime(eval(concat(Str(d), Str(n/d))))); \\ Michel Marcus, Nov 05 2019
Formula
a(3n + 2) = 0.
Comments