cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328948 Number of primes that are a concatenation of two positive integers whose product is n.

Original entry on oeis.org

1, 0, 2, 1, 0, 2, 2, 0, 1, 1, 0, 1, 2, 0, 2, 0, 0, 2, 1, 0, 3, 1, 0, 2, 1, 0, 2, 2, 0, 1, 2, 0, 3, 0, 0, 0, 1, 0, 2, 1, 0, 2, 1, 0, 1, 2, 0, 1, 2, 0, 3, 1, 0, 2, 0, 0, 3, 1, 0, 1, 0, 0, 4, 1, 0, 3, 1, 0, 2, 2, 0, 1, 1, 0, 1, 2, 0, 3, 1, 0, 2, 2, 0, 3, 0, 0, 1, 2, 0, 1, 3, 0, 3, 1, 0, 0
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 01 2019

Keywords

Comments

Records: 1, 3, 21, 63, 231, 924, 4389, 5187, 51051, 69069, 127281, 245973, 302841, 969969, 1312311, 1716099. - Corrected by Robert Israel, Dec 14 2023
This is not always the same as the number of divisors d of n such that the concatenation of d and n/d is prime, because the same prime could occur for more than one divisor. For example, 1140678 = 14*81477 = 14814*77 with 1481477 prime, and this prime is counted only once in a(1140678) = 7. - Robert Israel, Dec 14 2023

Examples

			1(11), 2(-), 3(13, 31), 4(41), 5(-), 6(23, 61), 7(17, 71), 8(-), 9(19), 10(101), 11(-), 12(43), 13(113, 131), 14(-), 15(53, 151), 16(-).
		

Crossrefs

Programs

  • Magma
    [#[a: d in Divisors(n)| IsPrime(a) where a is Seqint(Intseq(d) cat Intseq(n div d))]:n in [1..100]]; // Marius A. Burtea, Nov 05 2019
  • Maple
    f:= proc(n)
       if n mod 3 = 2 then return 0 fi;
       nops(select(isprime, {seq(dcat(t,n/t), t = numtheory:-divisors(n))})
    end proc:
    map(f, [$1..200]); # Robert Israel, Dec 14 2023
  • PARI
    a(n) = sumdiv(n, d, isprime(eval(concat(Str(d), Str(n/d))))); \\ Michel Marcus, Nov 05 2019
    

Formula

a(3n + 2) = 0.