A328965 Smallest k such that (bigomega(k) - 1) * omega(k) = n, and 0 if none exists, where omega = A001221, bigomega = A001222.
1, 4, 6, 16, 12, 64, 24, 256, 48, 60, 96, 4096, 120, 16384, 384, 240, 420, 262144, 480, 1048576, 840, 960, 6144, 16777216, 1680, 4620, 24576, 3840, 3360, 1073741824, 7680, 4294967296, 6720, 15360, 393216, 18480, 13440, 274877906944, 1572864, 61440, 26880, 4398046511104
Offset: 0
Keywords
Examples
The sequence of terms together with their prime signatures begins: 1: () 4: (2) 6: (1,1) 16: (4) 12: (2,1) 64: (6) 24: (3,1) 256: (8) 48: (4,1) 60: (2,1,1) 96: (5,1) 4096: (12) 120: (3,1,1) 16384: (14) 384: (7,1) 240: (4,1,1) 420: (2,1,1,1)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
dat=Table[(PrimeOmega[n]-1)*PrimeNu[n],{n,1000}]; Table[Position[dat,i][[1,1]],{i,First[Split[Union[dat],#2==#1+1&]]}]
-
PARI
a(n)={if(n<1, 1, my(m=oo); fordiv(n, d, if(d<=n/d+1, m=min(m, 2^(n/d-d+1)*vecprod(primes(d))))); m)} \\ Andrew Howroyd, Nov 04 2019
Formula
From Andrew Howroyd, Nov 03 2019: (Start)
a(p) = 2^(p + 1) for odd prime p.
a(n) = min_{d|n, d<=n/d+1} 2^(n/d-d+1)*A002110(d) for n > 0. (End)
Extensions
Terms a(23) and beyond from Andrew Howroyd, Nov 03 2019
Comments