cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328988 Number of partitions of n with rank a multiple of 3.

Original entry on oeis.org

1, 0, 1, 3, 1, 3, 7, 6, 10, 16, 16, 25, 37, 43, 58, 81, 95, 127, 168, 205, 264, 340, 413, 523, 660, 806, 1002, 1248, 1513, 1866, 2292, 2775, 3379, 4116, 4949, 5989, 7227, 8659, 10393, 12464, 14845, 17720, 21109, 25041, 29708, 35210, 41562, 49085, 57871, 68052
Offset: 1

Views

Author

N. J. A. Sloane, Nov 09 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, r) option remember; `if`(n=0 or i=1,
          `if`(irem(r+n, 3)=0, 1, 0), b(n, i-1, r)+
            b(n-i, min(n-i, i), irem(r+1, 3)))
        end:
    a:= proc(n) option remember; add(
          b(n-i, min(n-i, i), modp(1-i, 3)), i=1..n)
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Nov 11 2019
  • Mathematica
    b[n_, i_, r_] := b[n, i, r] = If[n == 0 || i == 1, If[Mod[r + n, 3] == 0, 1, 0], b[n, i - 1, r] + b[n - i, Min[n - i, i], Mod[r + 1, 3]]];
    a[n_] := a[n] = Sum[b[n - i, Min[n - i, i], Mod[1 - i, 3]], {i, 1, n}];
    Array[a, 60] (* Jean-François Alcover, Feb 29 2020, after Alois P. Heinz *)
  • PARI
    my(N=60, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2)*(1+x^(3*k))/(1+x^k+x^(2*k)))) \\ Seiichi Manyama, May 23 2023

Formula

a(n) = A000041(n) - 2*A328989(n). - Alois P. Heinz, Nov 11 2019
From Seiichi Manyama, May 23 2023: (Start)
a(n) = (A000041(n) + 2*A053274(n))/3.
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2) * (1+x^(3*k)) / (1+x^k+x^(2*k)). (End)

Extensions

a(33)-a(50) from Lars Blomberg, Nov 11 2019
Typo in a(14) in both the arXiv preprint and the published version in the Ramanujan Journal corrected by Alois P. Heinz, Nov 11 2019