A328989 Number of partitions of n with rank congruent to 1 mod 3.
0, 1, 1, 1, 3, 4, 4, 8, 10, 13, 20, 26, 32, 46, 59, 75, 101, 129, 161, 211, 264, 331, 421, 526, 649, 815, 1004, 1235, 1526, 1869, 2275, 2787, 3382, 4097, 4967, 5994, 7205, 8678, 10396, 12437, 14869, 17727, 21076, 25067, 29713, 35174, 41596, 49094, 57827, 68087
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Elaine Hou, and Meena Jagadeesan, Dyson’s partition ranks and their multiplicative extensions, arXiv:1607.03846 [math.NT], 2016; The Ramanujan Journal 45.3 (2018): 817-839. See Table 3.
Programs
-
Maple
b:= proc(n, i, r) option remember; `if`(n=0 or i=1, `if`(irem(r+n, 3)=0, 1, 0), b(n, i-1, r)+ b(n-i, min(n-i, i), irem(r+1, 3))) end: a:= proc(n) option remember; add( b(n-i, min(n-i, i), modp(2-i, 3)), i=1..n) end: seq(a(n), n=1..60); # Alois P. Heinz, Nov 11 2019
-
Mathematica
b[n_, i_, r_] := b[n, i, r] = If[n == 0 || i == 1, If[Mod[r + n, 3] == 0, 1, 0], b[n, i - 1, r] + b[n - i, Min[n - i, i], Mod[r + 1, 3]]]; a[n_] := a[n] = Sum[b[n - i, Min[n - i, i], Mod[2 - i, 3]], {i, 1, n}]; Array[a, 60] (* Jean-François Alcover, Feb 29 2020, after Alois P. Heinz *)
-
PARI
my(N=60, x='x+O('x^N)); concat(0, Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k+1)/2)*(1+x^k)/(1+x^k+x^(2*k))))) \\ Seiichi Manyama, May 23 2023
Formula
From Seiichi Manyama, May 23 2023: (Start)
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k+1)/2) * (1+x^k) / (1+x^k+x^(2*k)). (End)
Extensions
a(22)-a(50) from Lars Blomberg, Nov 11 2019
Comments