A329013 a(n) = p(2,n), where p(x,n) is the strong divisibility sequence of polynomials based on sqrt(5) as in A327322.
1, 12, 147, 1836, 116721, 301644, 27679401, 52496748, 704739609, 47763633852, 1436395799961, 1798109838252, 323942200421841, 2430837436077972, 24315999958264707, 68401618078375404, 16418241358998948801, 13682794309260216588, 3694504558135555477881
Offset: 1
Examples
See Example in A327322.
Programs
-
Mathematica
c[poly_] := If[Head[poly] === Times, Times @@ DeleteCases[(#1 (Boole[MemberQ[#1, x] || MemberQ[#1, y] || MemberQ[#1, z]] &) /@Variables /@ #1 &)[List @@ poly], 0], poly]; r = Sqrt[5]; f[x_, n_] := c[Factor[Expand[(r x + r)^n - (r x - 1/r)^n]]]; Flatten[Table[CoefficientList[f[x, n], x], {n, 1, 12}]]; (* A327322 *) Table[f[x, n] /. x -> 0, {n, 1, 30}] (* A329011 *) Table[f[x, n] /. x -> 1, {n, 1, 30}] (* A329012 *) Table[f[x, n] /. x -> 2, {n, 1, 30}] (* A329013 *) (* Peter J. C. Moses, Nov 01 2019 *)
Comments