cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A328978 Row sums of A329059.

Original entry on oeis.org

1, 4, 27, 233, 2392, 28554, 393642, 6247511, 113612460, 2349157984, 54693260003, 1419193978899, 40649683449268, 1274332809446116, 43403931028963260, 1596092227004496195, 63024526636437361468, 2659705693841420725200, 119463071327339129567836, 5690148543901378578826660
Offset: 0

Views

Author

Stefano Spezia, Nov 05 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Binomial[2+4n,n]Hypergeometric2F1[1,-n, -2-4n, 1+n])/(1+n),{n,0,19}]

Formula

a(n) = binomial(2 + 4*n, n)*2F1([1, -n], [-2 - 4*n], 1 + n)/(1 + n), where 2F1 is the hypergeometric function.
a(n) ~ exp(4) * n^(n-1). - Stefano Spezia, Sep 03 2020

A329057 1-parking triangle T(r, i, 1) read by rows: T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i) with k = 1 and 0 <= i <= r.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 5, 10, 16, 16, 14, 35, 75, 125, 125, 42, 126, 336, 756, 1296, 1296, 132, 462, 1470, 4116, 9604, 16807, 16807, 429, 1716, 6336, 21120, 61440, 147456, 262144, 262144, 1430, 6435, 27027, 104247, 360855, 1082565, 2657205, 4782969, 4782969, 4862, 24310, 114400, 500500, 2002000, 7150000, 22000000, 55000000, 100000000, 100000000
Offset: 0

Views

Author

Stefano Spezia, Nov 02 2019

Keywords

Comments

The k-parking numbers interpolate between the generalized Fuss-Catalan numbers and the number of parking functions (see Yip).

Examples

			r/i|  0   1   2   3   4
———————————————————————
0  |  1
1  |  1   1
2  |  2   3   3
3  |  5  10  16  16
4  | 14  35  75 125 125
		

Crossrefs

Programs

  • Mathematica
    T[r_, i_,k_] := (r + 1)^(i-1)*Binomial[k*(r + 1) + r - i - 1, r - i]; Flatten[Table[T[r,i,1],{r,0,9},{i,0,r}]]

Formula

T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i).
T(r, 0, 1) = A000108(r).
T(r, r, 1) = A000272(r + 1).

A329058 2-parking triangle T(r, i, 2) read by rows: T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i) with k = 2 and 0 <= i <= r.

Original entry on oeis.org

1, 2, 1, 7, 6, 3, 30, 36, 32, 16, 143, 220, 275, 250, 125, 728, 1365, 2184, 2808, 2592, 1296, 3876, 8568, 16660, 27440, 36015, 33614, 16807, 21318, 54264, 124032, 248064, 417792, 557056, 524288, 262144, 120175, 346104, 908523, 2133054, 4363065, 7479540, 10097379, 9565938, 4782969
Offset: 0

Views

Author

Stefano Spezia, Nov 02 2019

Keywords

Comments

The k-parking numbers interpolate between the generalized Fuss-Catalan numbers and the number of parking functions (see Yip).

Examples

			r/i|   0   1   2   3   4
————————————————————————
0  |   1
1  |   2   1
2  |   7   6   3
3  |  30  36  32  16
4  | 143 220 275 250 125
		

Crossrefs

Programs

  • Mathematica
    T[r_, i_,k_] := (r + 1)^(i-1)*Binomial[k*(r + 1) + r - i - 1, r - i]; Flatten[Table[T[r,i,2],{r,0,9},{i,0,r}]]

Formula

T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i).
T(r, 0, 2) = A006013(r).
T(r, r, 2) = A000272(r + 1).

A329060 4-parking triangle T(r, i, 4) read by rows: T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i) with k = 4 and 0 <= i <= r.

Original entry on oeis.org

1, 4, 1, 26, 12, 3, 204, 136, 64, 16, 1771, 1540, 1050, 500, 125, 16380, 17550, 15600, 10800, 5184, 1296, 158224, 201376, 220255, 198940, 139258, 67228, 16807, 1577532, 2324784, 3015936, 3351040, 3063808, 2162688, 1048576, 262144, 16112057, 26978328, 40467492, 53298648, 59960979, 55348596, 39326634, 19131876, 4782969
Offset: 0

Views

Author

Stefano Spezia, Nov 03 2019

Keywords

Comments

The k-parking numbers interpolate between the generalized Fuss-Catalan numbers and the number of parking functions (see Yip).

Examples

			r/i|    0      1      2      3      4
—————————————————————————————————————
0  |    1
1  |    4      1
2  |   26     12      3
3  |  204    136     64     16
4  | 1771   1540   1050    500    125
...
		

Crossrefs

Programs

  • Mathematica
    T[r_, i_, k_] := (r + 1)^(i-1)*Binomial[k*(r + 1) + r - i - 1, r - i]; Flatten[Table[T[r,i,4],{r,0,8},{i,0,r}]]

Formula

T(r, i, k) = (r + 1)^(i-1)*binomial(k*(r + 1) + r - i - 1, r - i).
T(r, 0, 4) = A118971(r).
T(r, r, 4) = A000272(r + 1).
Showing 1-4 of 4 results.