A329071 a(n) = phi(A275314(n)) - mu(A275314(n)), where A275314(n) is Euler's gradus function.
0, 2, 3, 3, 5, 2, 7, 2, 5, 1, 11, 5, 13, 4, 7, 5, 17, 1, 19, 7, 6, 4, 23, 1, 6, 5, 7, 6, 29, 4, 31, 1, 13, 6, 11, 7, 37, 8, 7, 4, 41, 3, 43, 13, 6, 8, 47, 7, 13, 3, 19, 7, 53, 4, 7, 3, 11, 9, 59, 6, 61, 16, 11, 7, 17, 5, 67, 19, 20, 4, 71, 4, 73, 17, 11, 11
Offset: 1
Keywords
Programs
-
Mathematica
gradus[n_] := 1 + Plus @@ ((First[#] - 1) * Last[#] & /@ FactorInteger[n]); a[n_] := EulerPhi[(g = gradus[n])] - MoebiusMu[g]; Array[a, 76] (* Amiram Eldar, Nov 03 2019 *)
-
PARI
g(n) = my(f = factor(n)); sum(k=1, #f~, (f[k, 1]-1)*f[k, 2])+ 1; \\ A275314 a(n) = my(gn = g(n)); eulerphi(gn) - moebius(gn); \\ Michel Marcus, Nov 04 2019