A329074
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of ((Sum_{j=-n..n} x^j) * (Sum_{j=-n..n} y^j) - (Sum_{j=-n+1..n-1} x^j) * (Sum_{j=-n+1..n-1} y^j))^k.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 8, 0, 1, 1, 24, 16, 0, 1, 1, 216, 48, 24, 0, 1, 1, 1200, 1200, 72, 32, 0, 1, 1, 8840, 10200, 3336, 96, 40, 0, 1, 1, 58800, 165760, 34800, 7008, 120, 48, 0, 1, 1, 423640, 2032800, 912840, 82800, 12600, 144, 56, 0, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 0, 8, 24, 216, 1200, ...
1, 0, 16, 48, 1200, 10200, ...
1, 0, 24, 72, 3336, 34800, ...
1, 0, 32, 96, 7008, 82800, ...
1, 0, 40, 120, 12600, 162000, ...
-
{T(n, k) = if(n==0, 1, polcoef(polcoef((sum(j=0, 2*n, (x^j+1/x^j)*(y^(2*n-j)+1/y^(2*n-j)))-x^(2*n)-1/x^(2*n)-y^(2*n)-1/y^(2*n))^k, 0), 0))}
-
f(n) = (x^(n+1)-1/x^n)/(x-1);
T(n, k) = if(n==0, 1, sum(j=0, k, (-1)^(k-j)*binomial(k, j)*polcoef(f(n)^j*f(n-1)^(k-j), 0)^2))
A329067
Constant term in the expansion of ((x^5 + x^3 + x + 1/x + 1/x^3 + 1/x^5)*(y^5 + y^3 + y + 1/y + 1/y^3 + 1/y^5) - (x^3 + x + 1/x + 1/x^3)*(y^3 + y + 1/y + 1/y^3))^(2*n).
Original entry on oeis.org
1, 20, 2100, 423440, 117234740, 36938855520, 12321942357648, 4240628338620960, 1489773976776270900, 531369088429408040240, 191788135117910898767200, 69889981814391283195249872, 25671987914195551303751107472, 9493180954173722971961114187200
Offset: 0
-
{a(n) = polcoef(polcoef(((x^5+x^3+x+1/x+1/x^3+1/x^5)*(y^5+y^3+y+1/y+1/y^3+1/y^5)-(x^3+x+1/x+1/x^3)*(y^3+y+1/y+1/y^3))^(2*n), 0), 0)}
-
{a(n) = polcoef(polcoef((sum(k=0, 5, (x^k+1/x^k)*(y^(5-k)+1/y^(5-k)))-x^5-1/x^5-y^5-1/y^5)^(2*n), 0), 0)}
-
f(n) = (x^(2*n+2)-1/x^(2*n+2))/(x-1/x);
a(n) = sum(k=0, 2*n, (-1)^k*binomial(2*n, k)*polcoef(f(2)^k*f(1)^(2*n-k), 0)^2)
A329077
Constant term in the expansion of ((Sum_{k=-3..3} x^k) * (Sum_{k=-3..3} y^k) - (Sum_{k=-2..2} x^k) * (Sum_{k=-2..2} y^k))^n.
Original entry on oeis.org
1, 0, 24, 72, 3336, 34800, 912840, 15661520, 355423880, 7241240160, 160151370624, 3461028611040, 76789098028104, 1700195813892576, 38037857914721808, 853169553940415712, 19240825799184080520, 435267116844063531456, 9882232970998312871232
Offset: 0
-
{a(n) = polcoef(polcoef((sum(k=-3, 3, x^k)*sum(k=-3, 3, y^k)-sum(k=-2, 2, x^k)*sum(k=-2, 2, y^k))^n, 0), 0)}
-
{a(n) = polcoef(polcoef((sum(k=0, 6, (x^k+1/x^k)*(y^(6-k)+1/y^(6-k)))-x^6-1/x^6-y^6-1/y^6)^n, 0), 0)}
-
f(n) = (x^(n+1)-1/x^n)/(x-1);
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef(f(3)^k*f(2)^(n-k), 0)^2)
Showing 1-3 of 3 results.
Comments