cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A329066 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of ( (Sum_{j=0..n} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n} y^(2*j+1)+1/y^(2*j+1)) - (Sum_{j=0..n-1} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n-1} y^(2*j+1)+1/y^(2*j+1)) )^(2*k).

Original entry on oeis.org

1, 4, 1, 36, 12, 1, 400, 588, 20, 1, 4900, 49440, 2100, 28, 1, 63504, 5187980, 423440, 4956, 36, 1, 853776, 597027312, 117234740, 1751680, 9540, 44, 1, 11778624, 71962945824, 36938855520, 907687900, 5101200, 16236, 52, 1
Offset: 0

Views

Author

Seiichi Manyama, Nov 03 2019

Keywords

Comments

T(n,k) is the number of (2*k)-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 2*n+1).
T(n,k) is the constant term in the expansion of (Sum_{j=0..2*n+1} (x^j + 1/x^j)*(y^(2*n+1-j) + 1/y^(2*n+1-j)) - x^(2*n+1) - 1/x^(2*n+1) - y^(2*n+1) - 1/y^(2*n+1))^(2*k).

Examples

			Square array begins:
   1,  4,   36,     400,       4900, ...
   1, 12,  588,   49440,    5187980, ...
   1, 20, 2100,  423440,  117234740, ...
   1, 28, 4956, 1751680,  907687900, ...
   1, 36, 9540, 5101200, 4190017860, ...
		

Crossrefs

Columns k=0-1 give A000012, A017113.
Rows n=0-2 give A002894, A329024, A329067.
Main diagonal gives A342964.

Programs

  • PARI
    {T(n, k) = polcoef(polcoef((sum(j=0, 2*n+1, (x^j+1/x^j)*(y^(2*n+1-j)+1/y^(2*n+1-j)))-x^(2*n+1)-1/x^(2*n+1)-y^(2*n+1)-1/y^(2*n+1))^(2*k), 0), 0)}
    
  • PARI
    f(n) = (x^(2*n+2)-1/x^(2*n+2))/(x-1/x);
    T(n, k) = sum(j=0, 2*k, (-1)^j*binomial(2*k, j)*polcoef(f(n)^j*f(n-1)^(2*k-j), 0)^2)

Formula

See the second code written in PARI.

A329075 Constant term in the expansion of ((Sum_{k=-2..2} x^k) * (Sum_{k=-2..2} y^k) - (Sum_{k=-1..1} x^k) * (Sum_{k=-1..1} y^k))^n.

Original entry on oeis.org

1, 0, 16, 48, 1200, 10200, 165760, 2032800, 30115120, 417189360, 6116225976, 88579001280, 1308168101856, 19335388664592, 288264711738432, 4311842765438208, 64819095869951280, 977630677389002208, 14796595755047824432, 224583060859608559680, 3417918348978709970680
Offset: 0

Views

Author

Seiichi Manyama, Nov 03 2019

Keywords

Comments

Also number of n-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 4).

Crossrefs

Row n=2 of A329074.

Programs

  • PARI
    {a(n) = polcoef(polcoef((sum(k=-2, 2, x^k)*sum(k=-2, 2, y^k)-(x+1+1/x)*(y+1+1/y))^n, 0), 0)}
    
  • PARI
    {a(n) = polcoef(polcoef((sum(k=0, 4, (x^k+1/x^k)*(y^(4-k)+1/y^(4-k)))-x^4-1/x^4-y^4-1/y^4)^n, 0), 0)}
    
  • PARI
    f(n) = (x^(n+1)-1/x^n)/(x-1);
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef(f(2)^k*f(1)^(n-k), 0)^2)

Formula

Conjecture: a(n) ~ 2 * 16^n / (11*Pi*n). - Vaclav Kotesovec, Nov 04 2019

A329076 Constant term in the expansion of ((Sum_{k=-n..n} x^k) * (Sum_{k=-n..n} y^k) - (Sum_{k=-n+1..n-1} x^k) * (Sum_{k=-n+1..n-1} y^k))^n.

Original entry on oeis.org

1, 0, 16, 72, 7008, 162000, 17555520, 1093527120, 140846184640, 16016249944800, 2550757928818680, 419682645514181280, 82389928294166805312, 17418502084657134228768, 4123280170924828458697152, 1054943518137131171386437600, 293933660095874311773617934720, 87968971083026619734709639853632
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2019

Keywords

Comments

Also number of n-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 2*n).

Crossrefs

Main diagonal of A329074.

Programs

  • PARI
    {a(n) = polcoef(polcoef((sum(k=-n, n, x^k)*sum(k=-n, n, y^k)-sum(k=-n+1, n-1, x^k)*sum(k=-n+1, n-1, y^k))^n, 0), 0)}
    
  • PARI
    {a(n) = polcoef(polcoef((sum(k=0, 2*n, (x^k+1/x^k)*(y^(2*n-k)+1/y^(2*n-k)))-x^(2*n)-1/x^(2*n)-y^(2*n)-1/y^(2*n))^n, 0), 0)}
    
  • PARI
    f(n) = (x^(n+1)-1/x^n)/(x-1);
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef(f(n)^k*f(n-1)^(n-k), 0)^2)

Formula

Conjecture: a(n) ~ 3 * 2^(3*n - 2) * n^(n-3) / Pi. - Vaclav Kotesovec, Nov 05 2019

A329077 Constant term in the expansion of ((Sum_{k=-3..3} x^k) * (Sum_{k=-3..3} y^k) - (Sum_{k=-2..2} x^k) * (Sum_{k=-2..2} y^k))^n.

Original entry on oeis.org

1, 0, 24, 72, 3336, 34800, 912840, 15661520, 355423880, 7241240160, 160151370624, 3461028611040, 76789098028104, 1700195813892576, 38037857914721808, 853169553940415712, 19240825799184080520, 435267116844063531456, 9882232970998312871232
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2019

Keywords

Comments

Also number of n-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 6).

Crossrefs

Programs

  • PARI
    {a(n) = polcoef(polcoef((sum(k=-3, 3, x^k)*sum(k=-3, 3, y^k)-sum(k=-2, 2, x^k)*sum(k=-2, 2, y^k))^n, 0), 0)}
    
  • PARI
    {a(n) = polcoef(polcoef((sum(k=0, 6, (x^k+1/x^k)*(y^(6-k)+1/y^(6-k)))-x^6-1/x^6-y^6-1/y^6)^n, 0), 0)}
    
  • PARI
    f(n) = (x^(n+1)-1/x^n)/(x-1);
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef(f(3)^k*f(2)^(n-k), 0)^2)

Formula

Conjecture: a(n) ~ 6 * 24^n / (73*Pi*n). - Vaclav Kotesovec, Nov 04 2019

A329078 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the number of k-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = n).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 4, 0, 1, 1, 0, 8, 0, 1, 1, 36, 24, 12, 0, 1, 1, 0, 216, 0, 16, 0, 1, 1, 400, 1200, 588, 48, 20, 0, 1, 1, 0, 8840, 0, 1200, 0, 24, 0, 1, 1, 4900, 58800, 49440, 10200, 2100, 72, 28, 0, 1, 1, 0, 423640, 0, 165760, 0, 3336, 0, 32, 0, 1
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2019

Keywords

Comments

T(n,k) is the constant term in the expansion of (Sum_{j=0..n} (x^j + 1/x^j)*(y^(n-j) + 1/y^(n-j)) - x^n - 1/x^n - y^n - 1/y^n)^k for n > 0.

Examples

			Square array begins:
   1, 1,  1,  1,    1,     1, ...
   1, 0,  4,  0,   36,     0, ...
   1, 0,  8, 24,  216,  1200, ...
   1, 0, 12,  0,  588,     0, ...
   1, 0, 16, 48, 1200, 10200, ...
   1, 0, 20,  0, 2100,     0, ...
		

Crossrefs

Programs

  • PARI
    {T(n,k) = if(n==0, 1, polcoef(polcoef((sum(j=0, n, (x^j+1/x^j)*(y^(n-j)+1/y^(n-j)))-x^n-1/x^n-y^n-1/y^n)^k, 0), 0))}
Showing 1-5 of 5 results.