cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A329074 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of ((Sum_{j=-n..n} x^j) * (Sum_{j=-n..n} y^j) - (Sum_{j=-n+1..n-1} x^j) * (Sum_{j=-n+1..n-1} y^j))^k.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 8, 0, 1, 1, 24, 16, 0, 1, 1, 216, 48, 24, 0, 1, 1, 1200, 1200, 72, 32, 0, 1, 1, 8840, 10200, 3336, 96, 40, 0, 1, 1, 58800, 165760, 34800, 7008, 120, 48, 0, 1, 1, 423640, 2032800, 912840, 82800, 12600, 144, 56, 0, 1
Offset: 0

Views

Author

Seiichi Manyama, Nov 03 2019

Keywords

Comments

T(n,k) is the number of k-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 2*n).
T(n,k) is the constant term in the expansion of (Sum_{j=0..2*n} (x^j + 1/x^j)*(y^(2*n-j) + 1/y^(2*n-j)) - x^(2*n) - 1/x^(2*n) - y^(2*n) - 1/y^(2*n))^k for n > 0.

Examples

			Square array begins:
   1, 1,  1,   1,     1,      1, ...
   1, 0,  8,  24,   216,   1200, ...
   1, 0, 16,  48,  1200,  10200, ...
   1, 0, 24,  72,  3336,  34800, ...
   1, 0, 32,  96,  7008,  82800, ...
   1, 0, 40, 120, 12600, 162000, ...
		

Crossrefs

Rows n=0-3 give A000012, A094061, A329075, A329077.
Main diagonal gives A329076.
Cf. A329066.

Programs

  • PARI
    {T(n, k) = if(n==0, 1, polcoef(polcoef((sum(j=0, 2*n, (x^j+1/x^j)*(y^(2*n-j)+1/y^(2*n-j)))-x^(2*n)-1/x^(2*n)-y^(2*n)-1/y^(2*n))^k, 0), 0))}
    
  • PARI
    f(n) = (x^(n+1)-1/x^n)/(x-1);
    T(n, k) = if(n==0, 1, sum(j=0, k, (-1)^(k-j)*binomial(k, j)*polcoef(f(n)^j*f(n-1)^(k-j), 0)^2))

Formula

T(0,k) = 1^k = 1.
See the second code written in PARI.

A329024 Constant term in the expansion of ((x^3 + x + 1/x + 1/x^3)*(y^3 + y + 1/y + 1/y^3) - (x + 1/x)*(y + 1/y))^(2*n).

Original entry on oeis.org

1, 12, 588, 49440, 5187980, 597027312, 71962945824, 8923789535232, 1128795397492620, 144940851928720848, 18832163401980525168, 2470451402766989534256, 326667449725835512275488, 43485599433527022301377600, 5821983056232777427055717760
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2019

Keywords

Comments

Also number of (2*n)-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 3).
*
|
*-- --*
| | |
*-- -- -- --*
| | | | |
*-- -- --P-- -- --*
| | | | |
*-- -- -- --*
| | |
*-- --*
|
*
Point P move to any position of * in the next step.

Crossrefs

Row n=1 of A329066.

Programs

  • PARI
    {a(n) = polcoef(polcoef(((x^3+x+1/x+1/x^3)*(y^3+y+1/y+1/y^3)-(x+1/x)*(y+1/y))^(2*n), 0), 0)}
    
  • PARI
    {a(n) = polcoef(polcoef((sum(k=0, 3, (x^k+1/x^k)*(y^(3-k)+1/y^(3-k)))-x^3-1/x^3-y^3-1/y^3)^(2*n), 0), 0)}
    
  • PARI
    f(n) = (x^(2*n+2)-1/x^(2*n+2))/(x-1/x);
    a(n) = sum(k=0, 2*n, (-1)^k*binomial(2*n, k)*polcoef(f(1)^k*f(0)^(2*n-k), 0)^2)

Formula

Conjecture: a(n) ~ 3 * 144^n / (19*Pi*n). - Vaclav Kotesovec, Nov 04 2019

A329067 Constant term in the expansion of ((x^5 + x^3 + x + 1/x + 1/x^3 + 1/x^5)*(y^5 + y^3 + y + 1/y + 1/y^3 + 1/y^5) - (x^3 + x + 1/x + 1/x^3)*(y^3 + y + 1/y + 1/y^3))^(2*n).

Original entry on oeis.org

1, 20, 2100, 423440, 117234740, 36938855520, 12321942357648, 4240628338620960, 1489773976776270900, 531369088429408040240, 191788135117910898767200, 69889981814391283195249872, 25671987914195551303751107472, 9493180954173722971961114187200
Offset: 0

Views

Author

Seiichi Manyama, Nov 03 2019

Keywords

Comments

Also number of (2*n)-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 5).

Crossrefs

Row n=2 of A329066.

Programs

  • PARI
    {a(n) = polcoef(polcoef(((x^5+x^3+x+1/x+1/x^3+1/x^5)*(y^5+y^3+y+1/y+1/y^3+1/y^5)-(x^3+x+1/x+1/x^3)*(y^3+y+1/y+1/y^3))^(2*n), 0), 0)}
    
  • PARI
    {a(n) = polcoef(polcoef((sum(k=0, 5, (x^k+1/x^k)*(y^(5-k)+1/y^(5-k)))-x^5-1/x^5-y^5-1/y^5)^(2*n), 0), 0)}
    
  • PARI
    f(n) = (x^(2*n+2)-1/x^(2*n+2))/(x-1/x);
    a(n) = sum(k=0, 2*n, (-1)^k*binomial(2*n, k)*polcoef(f(2)^k*f(1)^(2*n-k), 0)^2)

Formula

Conjecture: a(n) ~ 400^n / (17*Pi*n). - Vaclav Kotesovec, Nov 04 2019

A329078 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the number of k-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = n).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 4, 0, 1, 1, 0, 8, 0, 1, 1, 36, 24, 12, 0, 1, 1, 0, 216, 0, 16, 0, 1, 1, 400, 1200, 588, 48, 20, 0, 1, 1, 0, 8840, 0, 1200, 0, 24, 0, 1, 1, 4900, 58800, 49440, 10200, 2100, 72, 28, 0, 1, 1, 0, 423640, 0, 165760, 0, 3336, 0, 32, 0, 1
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2019

Keywords

Comments

T(n,k) is the constant term in the expansion of (Sum_{j=0..n} (x^j + 1/x^j)*(y^(n-j) + 1/y^(n-j)) - x^n - 1/x^n - y^n - 1/y^n)^k for n > 0.

Examples

			Square array begins:
   1, 1,  1,  1,    1,     1, ...
   1, 0,  4,  0,   36,     0, ...
   1, 0,  8, 24,  216,  1200, ...
   1, 0, 12,  0,  588,     0, ...
   1, 0, 16, 48, 1200, 10200, ...
   1, 0, 20,  0, 2100,     0, ...
		

Crossrefs

Programs

  • PARI
    {T(n,k) = if(n==0, 1, polcoef(polcoef((sum(j=0, n, (x^j+1/x^j)*(y^(n-j)+1/y^(n-j)))-x^n-1/x^n-y^n-1/y^n)^k, 0), 0))}

A342964 Constant term in the expansion of ( (Sum_{j=0..n} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n} y^(2*j+1)+1/y^(2*j+1)) - (Sum_{j=0..n-1} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n-1} y^(2*j+1)+1/y^(2*j+1)) )^(2*n).

Original entry on oeis.org

1, 12, 2100, 1751680, 4190017860, 20874801722544, 177661172742061008, 2295966445175463883680, 41848194615009705993547620, 1022849138778659709119846990032, 32304962696573489860535097887683296
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2021

Keywords

Comments

Number of (2*n)-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 2*n+1).
Constant term in the expansion of (Sum_{j=0..2*n+1} (x^j + 1/x^j)*(y^(2*n+1-j) + 1/y^(2*n+1-j)) - x^(2*n+1) - 1/x^(2*n+1) - y^(2*n+1) - 1/y^(2*n+1))^(2*n).

Crossrefs

Main diagonal of A329066.

Programs

  • PARI
    f(n) = (x^(2*n+2)-1/x^(2*n+2))/(x-1/x);
    a(n) = sum(j=0, 2*n, (-1)^j*binomial(2*n, j)*polcoef(f(n)^j*f(n-1)^(2*n-j), 0)^2);
Showing 1-5 of 5 results.