A329074 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of ((Sum_{j=-n..n} x^j) * (Sum_{j=-n..n} y^j) - (Sum_{j=-n+1..n-1} x^j) * (Sum_{j=-n+1..n-1} y^j))^k.
1, 1, 1, 1, 0, 1, 1, 8, 0, 1, 1, 24, 16, 0, 1, 1, 216, 48, 24, 0, 1, 1, 1200, 1200, 72, 32, 0, 1, 1, 8840, 10200, 3336, 96, 40, 0, 1, 1, 58800, 165760, 34800, 7008, 120, 48, 0, 1, 1, 423640, 2032800, 912840, 82800, 12600, 144, 56, 0, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 0, 8, 24, 216, 1200, ... 1, 0, 16, 48, 1200, 10200, ... 1, 0, 24, 72, 3336, 34800, ... 1, 0, 32, 96, 7008, 82800, ... 1, 0, 40, 120, 12600, 162000, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..100, flattened
- Wikipedia, Taxicab geometry.
Crossrefs
Programs
-
PARI
{T(n, k) = if(n==0, 1, polcoef(polcoef((sum(j=0, 2*n, (x^j+1/x^j)*(y^(2*n-j)+1/y^(2*n-j)))-x^(2*n)-1/x^(2*n)-y^(2*n)-1/y^(2*n))^k, 0), 0))}
-
PARI
f(n) = (x^(n+1)-1/x^n)/(x-1); T(n, k) = if(n==0, 1, sum(j=0, k, (-1)^(k-j)*binomial(k, j)*polcoef(f(n)^j*f(n-1)^(k-j), 0)^2))
Formula
T(0,k) = 1^k = 1.
See the second code written in PARI.
Comments