cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A094061 Number of n-moves paths of a king starting and ending at the origin of an infinite chessboard.

Original entry on oeis.org

1, 0, 8, 24, 216, 1200, 8840, 58800, 423640, 3000480, 21824208, 158964960, 1171230984, 8668531872, 64574844048, 483114856224, 3630440899800, 27379154692032, 207172490054816, 1572194644061184, 11962847247681616, 91242602561647680, 697438669619791008
Offset: 0

Views

Author

Matthijs Coster, Apr 29 2004

Keywords

Comments

The chessboard here is the full four-quadrant board Z X Z.
This is an analog of A054474 for walks on a square grid where the steps can be made diagonally as well.
a(n) is the constant term in the expansion of ((x + 1/x) * (y + 1/y) + x^2 + 1/x^2 + y^2 + 1/y^2)^n. - Seiichi Manyama, Nov 03 2019

References

  • D. Joyner, "Adventures in Group Theory: Rubik's Cube, Merlin's Machine and Other Mathematical Toys", Johns Hopkins University Press, 2002, pp. 79

Crossrefs

Programs

  • Maple
    a:=array(0..30):a[0]:=1:a[1]:=0:a[2]:=8:a[3]:=24:for n from 3 to 29 do a[n+1]:= (n*(5*n+1)*a[n]+2*(15*n^2+6*n-5)*a[n-1]-8*(5*n^2-23*n+21)*a[n-2]-64*(n-2)^2*a[n-3])/(n+1)^2: print(n+1,a[n+1]) od:
    # second Maple program
    a:= proc(n) option remember; `if`(n<3, (n-1)*(9*n-2)/2,
          ((n-1)*(3*n-1)*(3*n-4) *a(n-1)
          +(108*n^3-396*n^2+452*n-152) *a(n-2)
          +32*(3*n-2)*(n-2)^2 *a(n-3))/ (n^2*(3*n-5)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 02 2012
  • Mathematica
    a[n_]:=Module[{f=(x+x^-1+y+y^-1+x y+x^-1y+x^-1y^-1+x y^-1)^n,s}, s=Series[f,{x,0,0},{y,0,0}]; SeriesCoefficient[s,{0,0}]]; Table[a[n], {n,1,22}] (* Armin Vollmer (Armin.Vollmer(AT)kabelleipzig.de), May 01 2006 *)
    CoefficientList[Series[1/(1+4*x)*LegendreP[-1/2,1-32*x*(1+x)/(1+4*x)^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Aug 16 2013 *)
  • Maxima
    a[0]:1$
    a[1]:0$
    a[2]:8$
    a[3]:24$
    a[n]:=((n-1)*(3*n-1)*(3*n-4) *a[n-1]
          +(108*n^3-396*n^2+452*n-152) *a[n-2]
          +32*(3*n-2)*(n-2)^2 *a[n-3])/ (n^2*(3*n-5))$
    A094061(n):=a[n]$
    makelist(A094061(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
    
  • PARI
    {a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef((1+x+1/x)^k, 0)^2)} \\ Seiichi Manyama, Oct 29 2019
    
  • PARI
    {a(n) = polcoef(polcoef(((x+1/x)*(y+1/y)+x^2+1/x^2+y^2+1/y^2)^n, 0), 0)} \\ Seiichi Manyama, Nov 03 2019

Formula

D-finite with recurrence (n+1)^2*a(n+1) = n*(5*n+1)*a(n) + 2*(15*n^2+6*n-5)*a(n-1) - 8*(5*n^2-23*n+21) *a(n-2) - 64*(n-2)^2*a(n-3).
G.f.: (2/(Pi*(1+4*x))) * EllipticK(4*sqrt(x*(1+x))/(1+4*x)) = 1/(1+4*x) * hypergeom([1/2,1/2], [1], 16*(x*(1+x))/(1+4*x)^2). - Sergey Perepechko, Jan 15 2011
a(n) ~ 2^(3*n+1)/(3*Pi*n). - Vaclav Kotesovec, Aug 16 2013
a(n) = (1/Pi^2) * Integral_{y = 0..Pi} Integral_{x = 0..Pi} (2*cos(x) + 2*cos(y) + 4*cos(x)*cos(y))^n dx dy. - Peter Bala, Feb 14 2017
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A002426(k)^2. - Seiichi Manyama, Oct 29 2019
From Peter Bala, Feb 08 2022: (Start)
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k.
Conjecture: the stronger congruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 5 and positive integers n and k. (End)
a(n) = Sum_{j = 0..n} Sum_{k = 0..j} binomial(2*j,j)^2*binomial(j,k)* binomial(n+j-k,2*j)*(-4)^(n-j-k). - Peter Bala, Mar 19 2022

Extensions

More terms from and entry improved by Sergey Perepechko, Sep 06 2004

A329066 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of ( (Sum_{j=0..n} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n} y^(2*j+1)+1/y^(2*j+1)) - (Sum_{j=0..n-1} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n-1} y^(2*j+1)+1/y^(2*j+1)) )^(2*k).

Original entry on oeis.org

1, 4, 1, 36, 12, 1, 400, 588, 20, 1, 4900, 49440, 2100, 28, 1, 63504, 5187980, 423440, 4956, 36, 1, 853776, 597027312, 117234740, 1751680, 9540, 44, 1, 11778624, 71962945824, 36938855520, 907687900, 5101200, 16236, 52, 1
Offset: 0

Views

Author

Seiichi Manyama, Nov 03 2019

Keywords

Comments

T(n,k) is the number of (2*k)-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 2*n+1).
T(n,k) is the constant term in the expansion of (Sum_{j=0..2*n+1} (x^j + 1/x^j)*(y^(2*n+1-j) + 1/y^(2*n+1-j)) - x^(2*n+1) - 1/x^(2*n+1) - y^(2*n+1) - 1/y^(2*n+1))^(2*k).

Examples

			Square array begins:
   1,  4,   36,     400,       4900, ...
   1, 12,  588,   49440,    5187980, ...
   1, 20, 2100,  423440,  117234740, ...
   1, 28, 4956, 1751680,  907687900, ...
   1, 36, 9540, 5101200, 4190017860, ...
		

Crossrefs

Columns k=0-1 give A000012, A017113.
Rows n=0-2 give A002894, A329024, A329067.
Main diagonal gives A342964.

Programs

  • PARI
    {T(n, k) = polcoef(polcoef((sum(j=0, 2*n+1, (x^j+1/x^j)*(y^(2*n+1-j)+1/y^(2*n+1-j)))-x^(2*n+1)-1/x^(2*n+1)-y^(2*n+1)-1/y^(2*n+1))^(2*k), 0), 0)}
    
  • PARI
    f(n) = (x^(2*n+2)-1/x^(2*n+2))/(x-1/x);
    T(n, k) = sum(j=0, 2*k, (-1)^j*binomial(2*k, j)*polcoef(f(n)^j*f(n-1)^(2*k-j), 0)^2)

Formula

See the second code written in PARI.

A329077 Constant term in the expansion of ((Sum_{k=-3..3} x^k) * (Sum_{k=-3..3} y^k) - (Sum_{k=-2..2} x^k) * (Sum_{k=-2..2} y^k))^n.

Original entry on oeis.org

1, 0, 24, 72, 3336, 34800, 912840, 15661520, 355423880, 7241240160, 160151370624, 3461028611040, 76789098028104, 1700195813892576, 38037857914721808, 853169553940415712, 19240825799184080520, 435267116844063531456, 9882232970998312871232
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2019

Keywords

Comments

Also number of n-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 6).

Crossrefs

Programs

  • PARI
    {a(n) = polcoef(polcoef((sum(k=-3, 3, x^k)*sum(k=-3, 3, y^k)-sum(k=-2, 2, x^k)*sum(k=-2, 2, y^k))^n, 0), 0)}
    
  • PARI
    {a(n) = polcoef(polcoef((sum(k=0, 6, (x^k+1/x^k)*(y^(6-k)+1/y^(6-k)))-x^6-1/x^6-y^6-1/y^6)^n, 0), 0)}
    
  • PARI
    f(n) = (x^(n+1)-1/x^n)/(x-1);
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef(f(3)^k*f(2)^(n-k), 0)^2)

Formula

Conjecture: a(n) ~ 6 * 24^n / (73*Pi*n). - Vaclav Kotesovec, Nov 04 2019

A342964 Constant term in the expansion of ( (Sum_{j=0..n} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n} y^(2*j+1)+1/y^(2*j+1)) - (Sum_{j=0..n-1} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n-1} y^(2*j+1)+1/y^(2*j+1)) )^(2*n).

Original entry on oeis.org

1, 12, 2100, 1751680, 4190017860, 20874801722544, 177661172742061008, 2295966445175463883680, 41848194615009705993547620, 1022849138778659709119846990032, 32304962696573489860535097887683296
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2021

Keywords

Comments

Number of (2*n)-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 2*n+1).
Constant term in the expansion of (Sum_{j=0..2*n+1} (x^j + 1/x^j)*(y^(2*n+1-j) + 1/y^(2*n+1-j)) - x^(2*n+1) - 1/x^(2*n+1) - y^(2*n+1) - 1/y^(2*n+1))^(2*n).

Crossrefs

Main diagonal of A329066.

Programs

  • PARI
    f(n) = (x^(2*n+2)-1/x^(2*n+2))/(x-1/x);
    a(n) = sum(j=0, 2*n, (-1)^j*binomial(2*n, j)*polcoef(f(n)^j*f(n-1)^(2*n-j), 0)^2);
Showing 1-4 of 4 results.