cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A329074 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of ((Sum_{j=-n..n} x^j) * (Sum_{j=-n..n} y^j) - (Sum_{j=-n+1..n-1} x^j) * (Sum_{j=-n+1..n-1} y^j))^k.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 8, 0, 1, 1, 24, 16, 0, 1, 1, 216, 48, 24, 0, 1, 1, 1200, 1200, 72, 32, 0, 1, 1, 8840, 10200, 3336, 96, 40, 0, 1, 1, 58800, 165760, 34800, 7008, 120, 48, 0, 1, 1, 423640, 2032800, 912840, 82800, 12600, 144, 56, 0, 1
Offset: 0

Views

Author

Seiichi Manyama, Nov 03 2019

Keywords

Comments

T(n,k) is the number of k-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 2*n).
T(n,k) is the constant term in the expansion of (Sum_{j=0..2*n} (x^j + 1/x^j)*(y^(2*n-j) + 1/y^(2*n-j)) - x^(2*n) - 1/x^(2*n) - y^(2*n) - 1/y^(2*n))^k for n > 0.

Examples

			Square array begins:
   1, 1,  1,   1,     1,      1, ...
   1, 0,  8,  24,   216,   1200, ...
   1, 0, 16,  48,  1200,  10200, ...
   1, 0, 24,  72,  3336,  34800, ...
   1, 0, 32,  96,  7008,  82800, ...
   1, 0, 40, 120, 12600, 162000, ...
		

Crossrefs

Rows n=0-3 give A000012, A094061, A329075, A329077.
Main diagonal gives A329076.
Cf. A329066.

Programs

  • PARI
    {T(n, k) = if(n==0, 1, polcoef(polcoef((sum(j=0, 2*n, (x^j+1/x^j)*(y^(2*n-j)+1/y^(2*n-j)))-x^(2*n)-1/x^(2*n)-y^(2*n)-1/y^(2*n))^k, 0), 0))}
    
  • PARI
    f(n) = (x^(n+1)-1/x^n)/(x-1);
    T(n, k) = if(n==0, 1, sum(j=0, k, (-1)^(k-j)*binomial(k, j)*polcoef(f(n)^j*f(n-1)^(k-j), 0)^2))

Formula

T(0,k) = 1^k = 1.
See the second code written in PARI.

A342964 Constant term in the expansion of ( (Sum_{j=0..n} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n} y^(2*j+1)+1/y^(2*j+1)) - (Sum_{j=0..n-1} x^(2*j+1)+1/x^(2*j+1)) * (Sum_{j=0..n-1} y^(2*j+1)+1/y^(2*j+1)) )^(2*n).

Original entry on oeis.org

1, 12, 2100, 1751680, 4190017860, 20874801722544, 177661172742061008, 2295966445175463883680, 41848194615009705993547620, 1022849138778659709119846990032, 32304962696573489860535097887683296
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2021

Keywords

Comments

Number of (2*n)-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 2*n+1).
Constant term in the expansion of (Sum_{j=0..2*n+1} (x^j + 1/x^j)*(y^(2*n+1-j) + 1/y^(2*n+1-j)) - x^(2*n+1) - 1/x^(2*n+1) - y^(2*n+1) - 1/y^(2*n+1))^(2*n).

Crossrefs

Main diagonal of A329066.

Programs

  • PARI
    f(n) = (x^(2*n+2)-1/x^(2*n+2))/(x-1/x);
    a(n) = sum(j=0, 2*n, (-1)^j*binomial(2*n, j)*polcoef(f(n)^j*f(n-1)^(2*n-j), 0)^2);
Showing 1-2 of 2 results.