cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329117 Decimal expansion of Sum_{k>=1} (k^(1/k^2) - 1).

Original entry on oeis.org

9, 7, 1, 4, 9, 9, 0, 3, 4, 2, 8, 3, 3, 0, 8, 7, 5, 7, 2, 2, 2, 6, 2, 5, 0, 6, 2, 3, 1, 4, 7, 5, 4, 5, 8, 0, 0, 2, 2, 5, 5, 1, 0, 1, 4, 8, 9, 7, 0, 2, 3, 9, 8, 4, 2, 9, 0, 8, 9, 0, 4, 2, 5, 5, 9, 4, 0, 8, 4, 1, 1, 7, 0, 0, 9, 9, 5, 5, 4, 2, 4, 3, 7, 3, 0
Offset: 0

Views

Author

Daniel Hoyt, Nov 05 2019

Keywords

Examples

			0.971499034283308757222625062314754580022...
		

Crossrefs

Programs

  • Mathematica
    digits = 120; d = 1; j = 2; s = Pi^2 * (2*Log[Glaisher] - Log[2*Pi]/6 - EulerGamma/6); While[Abs[d] > 10^(-digits - 5), d = (-1)^j/j!*Derivative[j][Zeta][2*j]; s += d; j++]; RealDigits[s, 10, 120][[1]] (* Vaclav Kotesovec, Jun 18 2023 *)
  • PARI
    sumpos(k=1, k^(1/k^2) - 1) \\ Michel Marcus, Nov 05 2019

Formula

Equals Sum_{k>=1} (-1)^k / k! * k-th derivative of zeta(2*k). - Vaclav Kotesovec, Jun 18 2023