cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A329338 a(n) = {1{0}^(A268336(n)-1)}^(n-1){1}{0}^A051903(n): upper bound for A329126(n).

Original entry on oeis.org

1, 110, 101010, 111100, 100010001000100010, 1111110, 10000010000010000010000010000010000010, 11111111000, 1010101010101010100, 10101010101010101010, 100000000010000000001000000000100000000010000000001000000000100000000010000000001000000000100000000010
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2019

Keywords

Comments

This is the upper bound for A329126 as explained in the "FORMULA" there.
It is sharp for all n except 10, 14, 15, ...

Crossrefs

Cf. A329126, A329000, A329339 (this converted from binary to decimal), A268336, A051903.

Programs

  • PARI
    apply( {A329338(n)=my(k=lcm(lcm([p-1|p<-factor(n)[,1]]), n)/n); fromdigits(concat(vector(n, i, Vec(1, if(i1, vecmax(factor(n)[,2])+1)))))}, [1..16])

Formula

a(n) = A007088(A329339(n)), where A007088 = binary numbers and A329339(n) = 2^A051903(n)*(m^n-1)/(m-1) with m = 2^A268336(n).

A329440 Triangle read by rows: n-th row gives positions of ones in A329126(n) in decreasing order.

Original entry on oeis.org

0, 2, 1, 5, 3, 1, 5, 4, 3, 2, 17, 13, 9, 5, 1, 6, 5, 4, 3, 2, 1, 37, 31, 25, 19, 13, 7, 1, 10, 9, 8, 7, 6, 5, 4, 3, 18, 16, 14, 12, 10, 8, 6, 4, 2, 18, 17, 14, 13, 10, 9, 6, 5, 2, 1, 101, 91, 81, 71, 61, 51, 41, 31, 21, 11, 1, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4
Offset: 1

Views

Author

Peter Kagey, Nov 13 2019

Keywords

Comments

Does the n-th row always contain n entries?
Do the rows always form an n term arithmetic progression?
Conjecture: the last value in each row is A051903(n).

Examples

			Table begins:
   0
   2,  1
   5,  3,  1
   5,  4,  3,  2
  17, 13,  9,  5,  1
   6,  5,  4,  3,  2, 1
  37, 31, 25, 19, 13, 7, 1
For example, when n = 5, x^17 + x^13 + x^9 + x^5 + x is a multiple of 5 for all integers x > 1.
		

Crossrefs

A329000 a(n) is the least positive number which yields a multiple of n when its binary digit string, S(n), is read in any numeric base; a(n) is displayed in base 10.

Original entry on oeis.org

1, 6, 42, 60, 139810, 126, 139620524162, 2040, 349524, 419430, 2537779500750160131246576896002, 16380, 44612382091907903486070965589630128805126146, 418861572486, 146602109610, 1048560
Offset: 1

Views

Author

N. J. A. Sloane, Nov 12 2019

Keywords

Comments

If we consider sequence terms to be character strings, a(n) is A329126(n) read in base 2 and converted to base 10. Based on b-file for A329126.
Least k >= 1 such that n divides A329443(k). - Peter Munn, Dec 02 2021

Examples

			The strings S(1), S(2), S(3), ... are 1, 110, 101010, 111100, 100010001000100010, 1111110, ... (A329126); converted from binary to decimal these give the current sequence.
		

Crossrefs

Programs

Formula

a(n) <= A329339(n) = 2^A051903(n)*(m^n-1)/(m-1) with m = 2^A268336(n), equality except for n = 10, 14, 15, ... - M. F. Hasler, Nov 14 2019

Extensions

Definition corrected: not lexicographically earliest string, but smallest binary number. - M. F. Hasler, Nov 09 2021
Name aligned with new A329126 name by Peter Munn, Dec 02 2021

A329339 a(n) = 2^A051903(n)*Sum_{k=0..n-1} 2^(A268336(n)*k): upper bound for A329000(n).

Original entry on oeis.org

1, 6, 42, 60, 139810, 126, 139620524162, 2040, 349524, 699050, 2537779500750160131246576896002, 16380, 44612382091907903486070965589630128805126146, 1256584717458, 153722867280912930, 1048560, 231587712222682663714935471840371426842813815977643091627066215779128553111554, 1048572
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2019

Keywords

Comments

This corresponds to the upper bound for A329000 as explained in the "FORMULA" for A329126.
Differs from A329000(n) for n = 10, 14, 15, ...

Crossrefs

Cf. A329000, A329126, A329338 (a(n) written in binary), A067029, A051903.

Programs

  • PARI
    apply( A329339(n)={my(m=2^(lcm(lcm(znstar(n)[2]),n)/n)); (m^n-1)\(m-1)<1,vecmax(factor(n)[,2]))}, [1..20])

Formula

a(n) = 2^A051903(n)*(m^n-1)/(m-1) with m = 2^A268336(n).

A329443 a(n) is the GCD of the binary representation of n interpreted in any numeric base.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2
Offset: 0

Views

Author

Rémy Sigrist, Nov 13 2019

Keywords

Examples

			For n = 42:
- the binary representation of 42 is "101010",
- the corresponding interpretations in the first bases b, alongside their GCD, are:
  b   b+b^3+b^5  GCD
  --  ---------  ---
   2         42   42
   3        273   21
   4       1092   21
   5       3255   21
   6       7998    3
- as b + b^3 + b^5 is always divisible by 3, we have a(42) = 3.
		

Crossrefs

Programs

  • PARI
    a(n) = my (g=n, d=binary(n)); for (b=3, oo, g = gcd(g, fromdigits(d,b)); if (g < b, return (g)))

Formula

k divides a(A329000(k)) for any k > 0.

A329479 Number of degree n polynomials f with all nonzero coefficients equal to 1 such that f(k) is divisible by 3 for all integers k.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 6, 15, 30, 66, 121, 242, 462, 903, 1806, 3570, 7225, 14450, 29070, 58311, 116622, 233586, 466489, 932978, 1864590, 3727815, 7455630, 14908530, 29822521, 59645042, 119301006, 238612935, 477225870, 954473586, 1908903481, 3817806962, 7635526542
Offset: 1

Views

Author

Peter Kagey, Nov 13 2019

Keywords

Comments

Equivalently, this counts strings of numbers of length n that start with a 1 and which yield a multiple of 3 when read in any base.

Examples

			For n = 7, the a(7) = 6 (0,1)-polynomials of degree seven such that f(0) = f(1) = f(2) = 0 (mod 3) are
x^7 + x^5 + x^3,
x^7 + x^6 + x^5 + x^4 + x^3 + x^2,
x^7 + x^5 + x,
x^7 + x^3 + x,
x^7 + x^6 + x^5 + x^4 + x^2 + x, and
x^7 + x^6 + x^4 + x^3 + x^2 + x.
		

Crossrefs

A008776(n) gives the number of polynomials of degree n+3 without the coefficient restriction.

Formula

a(2n) = A024495(n-1) * A024493(n).
a(2n+1) = A024495(n) * A024493(n).
Conjectured recurrence: a(n) = 2a(n-1) + 2a(n-2) - 5a(n-3) - 2a(n-4) + 10a(n-5) - 4a(n-6) - 4a(n-7) + 8a(n-8).

A309846 Number of degree n polynomials f with all nonzero coefficients equal to 1 such that f(k) is divisible by 4 for all integers k.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 6, 10, 20, 32, 64, 120, 256, 512, 1056, 2080, 4160, 8192, 16384, 32640, 65536, 131072, 262656, 524800, 1049600, 2097152, 4194304, 8386560, 16777216, 33554432, 67117056, 134225920, 268451840, 536870912, 1073741824, 2147450880, 4294967296, 8589934592, 17180000256, 34359869440
Offset: 1

Views

Author

Peter Kagey, Nov 18 2019

Keywords

Comments

Equivalently, this counts strings of numbers of length n that start with a 1 and which yield a multiple of 4 when read in any base.
Conjecture: All terms are of the form 2^(n-5), 2^k*(2^(n-k-5) + 1), or 2^k*(2^(n-k-5) - 1) for some value of k.

Examples

			For n = 7, the a(7) = 6 (0,1)-polynomials of degree seven such that f(0) == f(1) == f(2) == f(3) == 0 (mod 3) are
x^7 + x^6 + x^5 + x^4,
x^7 + x^6 + x^4 + x^3,
x^7 + x^6 + x^5 + x^2,
x^7 + x^5 + x^4 + x^2,
x^7 + x^6 + x^3 + x^2, and
x^7 + x^4 + x^3 + x^2.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k, r;
         if n <= 4 then return 0 fi;
         r:= n mod 8;
         k:= (n-r)/8;
         if r = 0 then 16^k/8 + 256^k/32
         elif r = 1 then 16^k/4 + 256^k/16
         elif r = 2 then 256^k/8
         elif r = 3 then 256^k/4
         elif r = 4 then -16^k/2 + 256^k/2
         elif r = 5 then 256^k
         elif r = 6 then 2 * 256^k
         else 2 * 16^k + 4 * 256^k
         fi
    end proc:
    map(f, [$1..50]); # Robert Israel, Oct 29 2023

Formula

From Robert Israel, Oct 29 2023: (Start)
a(8 k) = 16^k/8 + 256^k/32 for k >= 1.
a(8 k + 1) = 16^k/4 + 256^k/16 for k >= 1.
a(8 k + 2) = 256^k/8 for k >= 1.
a(8 k + 3) = 256^k/4 for k >= 1.
a(8 k + 4) = -16^k/2 + 256^k/2.
a(8 k + 5) = 256^k.
a(8 k + 6) = 2 * 256^k.
a(8 k + 7) = 2 * 16^k + 4 * 256^k.
G.f.: x^5 * (1 - 2*x + 2*x^2 - 2*x^3)/((1 - 2*x) * (1 - 2*x^2) * (1 - 2*x + 2*x^2)). (End)

Extensions

More terms from Robert Israel, Oct 29 2023

A328994 a(n) = n^2*(1+n)*(1+n^2)/4.

Original entry on oeis.org

1, 15, 90, 340, 975, 2331, 4900, 9360, 16605, 27775, 44286, 67860, 100555, 144795, 203400, 279616, 377145, 500175, 653410, 842100, 1072071, 1349755, 1682220, 2077200, 2543125, 3089151, 3725190, 4461940, 5310915, 6284475, 7395856, 8659200, 10089585
Offset: 1

Views

Author

N. J. A. Sloane, Nov 12 2019

Keywords

Crossrefs

Programs

  • Magma
    [(n^2+n^3+n^4+n^5)/4: n in [1..40]] // Vincenzo Librandi, Nov 13 2019
  • Mathematica
    CoefficientList[Series[(1+9x+15x^2+5x^3)/(1-x)^6,{x,0,33}],x] (* Vincenzo Librandi, Nov 13 2019 *)

Formula

From Vincenzo Librandi, Nov 13 2019: (Start)
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
G.f.: x*(1+9*x+15*x^2+5*x^3)/(1-x)^6. (End)
Showing 1-8 of 8 results.