A329143 Number of integer partitions of n whose augmented differences are a periodic word.
0, 0, 1, 1, 1, 2, 1, 1, 3, 2, 2, 3, 2, 2, 4, 4, 5, 3, 5, 2, 10, 5, 6, 5, 10, 5, 11, 7, 13, 6, 15, 6, 20, 11, 18, 12, 27, 8, 27, 16, 32, 14, 35, 14, 42, 23, 43, 17, 56, 17, 61, 31, 67, 25, 78, 28, 88, 41, 89, 35, 119, 39, 116, 60, 131, 52, 154, 52, 170, 75, 182
Offset: 0
Keywords
Examples
The a(n) partitions for n = 2, 5, 8, 14, 16, 22: 11 32 53 95 5533 7744 11111 3221 5432 7441 9652 11111111 32222111 533311 554332 11111111111111 33222211 54333211 1111111111111111 332222221111 1111111111111111111111
Crossrefs
The Heinz numbers of these partitions are given by A329132.
The aperiodic version is A329136.
The non-augmented version is A329144.
Periodic binary words are A152061.
Periodic compositions are A178472.
Numbers whose binary expansion is periodic are A121016.
Numbers whose prime signature is periodic are A329140.
Programs
-
Mathematica
aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ]; aug[y_]:=Table[If[i
Extensions
More terms from Jinyuan Wang, Jun 27 2020
Comments