cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329157 Expansion of Product_{k>=1} (1 - Sum_{j>=1} j * x^(k*j)).

Original entry on oeis.org

1, -1, -3, -3, -4, 3, 2, 19, 21, 32, 40, 45, 16, 8, -18, -125, -164, -291, -358, -530, -588, -724, -592, -675, -358, -207, 570, 1201, 2208, 3333, 4944, 6490, 8277, 10492, 11800, 13260, 14328, 14722, 12942, 12075, 5640, 603, -10444, -21120, -39360, -55876, -83488
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 06 2019

Keywords

Comments

Convolution inverse of A329156.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>1, b(n, i-1), 0)-
          add(b(n-i*j, min(n-i*j, i-1))*j, j=`if`(i=1, n, 1..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..46);  # Alois P. Heinz, Jul 18 2025
  • Mathematica
    nmax = 46; CoefficientList[Series[Product[(1 - Sum[j x^(k j), {j, 1, nmax}]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 46; CoefficientList[Series[Product[(1 - x^k/(1 - x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 - x^k / (1 - x^k)^2).
G.f.: exp(-Sum_{k>=1} ( Sum_{d|k} 1 / (d * (1 - x^(k/d))^(2*d)) ) * x^k).
G.f.: Product_{k>=1} (1 - x^k)^A032198(k).
G.f.: A(x) = Product_{k>=1} 1 / B(x^k), where B(x) = g.f. of A088305.
a(n) = Sum_{k=0..A003056(n)} (-1)^k * A385001(n,k). - Alois P. Heinz, Jul 18 2025