cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329163 Expansion of Product_{k>=1} 1 / (1 - Sum_{j>=1} j * x^(j*(2*k - 1))).

Original entry on oeis.org

1, 1, 3, 9, 22, 59, 156, 405, 1061, 2786, 7284, 19071, 49948, 130738, 342288, 896175, 2346134, 6142287, 16080852, 42100020, 110219366, 288558380, 755455128, 1977807393, 5177967900, 13556094631, 35490316938, 92914858431, 243254253904, 636847905903, 1667289469704, 4365020491362
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 06 2019

Keywords

Comments

Weigh transform of A032198.

Crossrefs

Programs

  • Mathematica
    nmax = 31; CoefficientList[Series[Product[1/(1 - Sum[j x^(j (2 k - 1)), {j, 1, nmax}]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 31; CoefficientList[Series[Product[1/(1 - x^(2 k - 1)/(1 - x^(2 k - 1))^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1 / (1 - x^(2*k - 1) / (1 - x^(2*k - 1))^2).
G.f.: Product_{k>=1} (1 + x^k)^A032198(k).
a(n) ~ c * phi^(2*n) / sqrt(5), where c = Product_{k>=2} 1/(1 - phi^(2 - 4*k)/(phi^(2 - 4*k) - 1)^2) = 1.07705428718361459418304978675229012... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 07 2019