A329164 Let P1, P2, P3, P4 be consecutive primes, with P2-P1=P4-P3=2. a(n)=(P1+P2)/12 when P3-P2 sets a new record.
1, 23, 322, 495, 3407, 8113, 28893, 139708, 716182, 2497092, 5130198, 5761777, 7315173, 13194622, 145995245, 201544467, 417649822, 566513637, 833667068, 2266818768, 4710228962, 5186737183, 5192311957, 7454170028, 9853412390, 11817808908
Offset: 1
Keywords
Examples
Values of P1, P2, P3, P4 corresponding to record gaps: P3-P1 P1 P2 P3 P4 a(n) 6 5 7 11 13 (5+7)/12 = 1 12 137 139 149 151 (137+139)/12 = 23 18 1931 1933 1949 1951 (1931+1933)/12 = 322 30 2969 2971 2999 3001 (2969+2971)/12 = 495
Links
- Tomáš Brada and Natalia Makarova, Table of n, a(n) for n = 1..58
- Peter Munn, Plot2 graph of sequence against Fibonacci growth
Programs
-
PARI
p1=3;p2=5;p3=7;r=0;forprime(p4=11,1e9,if(p2-p1==2&&p4-p3==2,d=p3-p2;if(d>r,r=d;print1((p1+p2)/12,", ")));p1=p2;p2=p3;p3=p4)
Comments