cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A334973 Odd bi-unitary admirable numbers: the odd terms of A334972.

Original entry on oeis.org

945, 43065, 46035, 48195, 80535, 354585, 403095, 430815, 437745, 442365, 458055, 2305875, 3525795, 4404105, 4891887, 5388495, 5803245, 6126645, 6220665, 6375105, 6537375, 7853625, 7981875, 8109585, 8731125, 9071865, 9338595, 9784125, 13241745, 13351635, 23760555
Offset: 1

Views

Author

Amiram Eldar, May 18 2020

Keywords

Comments

Of the first 10^4 bi-unitary admirable numbers only 11 are odd.

Crossrefs

The bi-unitary version of A109729.
Intersection of A005408 and A334972.
Subsequence of A293186.

Programs

  • Mathematica
    fun[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), (p^(e + 1) - 1)/(p - 1) - p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); buDivQ[n_, 1] = True; buDivQ[n_, div_] := If[Mod[#2, #1] == 0, Last@Apply[Intersection, Map[Select[Divisors[#], Function[d, CoprimeQ[d, #/d]]] &, {#1, #2/#1}]] == 1, False] & @@ {div, n}; buAdmQ[n_] := (ab = bsigma[n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && buDivQ[n, ab/2]; Select[Range[1, 5*10^5, 2], buAdmQ]

A334975 Odd infinitary admirable numbers: the odd terms of A334974.

Original entry on oeis.org

945, 43065, 46035, 80535, 354585, 403095, 430815, 437745, 442365, 2305875, 3525795, 4404105, 4891887, 5388495, 5927985, 6126645, 6220665, 6375105, 6537375, 7853625, 8109585, 8731125, 9071865, 9338595, 9784125, 13241745, 23760555, 33381855, 34592805, 35642295
Offset: 1

Views

Author

Amiram Eldar, May 18 2020

Keywords

Comments

Of the first 10^4 infinitary admirable numbers only 9 are odd.

Crossrefs

The infinitary version of A109729.
Intersection of A005408 and A334974.
Subsequence of A127666.

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; infDivQ[n_, 1] = True; infDivQ[n_, d_] := BitAnd[IntegerExponent[n, First /@ (f = FactorInteger[d])], (e = Last /@ f)] == e; infAdmQ[n_] := (ab = isigma[n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && infDivQ[n, ab/2]; Select[Range[1, 5*10^5, 2], infAdmQ]

A336681 Odd exponential admirable numbers: the odd terms of A336680.

Original entry on oeis.org

6485886225, 71344748475, 110260065825, 123231838275, 125730522225, 149175383175, 162485579025, 185601564225, 188090700525, 191620685025, 195686793225, 201062472975, 239977790325, 265921335225, 278893107675, 304836652575, 343751969925, 395639059725, 434554377075
Offset: 1

Views

Author

Amiram Eldar, Jul 30 2020

Keywords

Comments

Exponential admirable numbers that are odd are relatively rare: there are 5742336 even exponential admirable numbers that are smaller than the first odd term, i.e., a(1) = A336680(5742337).

Examples

			6485886225 is a term since 6485886225 = 80535 + 241605 + ... + (-8456175) + ... + 2161962075 is the sum of its proper exponential divisors with one of them, 8456175, taken with a minus sign.
		

Crossrefs

The exponential version of A109729.
Intersection of A005408 and A336680.
Subsequence of A321147.
Similar sequences: A329188, A334973, A334975.

Programs

  • Mathematica
    dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; expAdmQ[n_] := (ab = esigma[n] - 2*n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && expDivQ[n, ab/2]; Select[Range[1, 10^9, 2], expAdmQ]
Showing 1-3 of 3 results.