cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329228 Triangle read by rows: T(n,k) is the number of digraphs on n unlabeled vertices such that every vertex has outdegree k, n >= 1, 0 <= k < n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 13, 79, 13, 1, 1, 40, 1499, 1499, 40, 1, 1, 100, 35317, 257290, 35317, 100, 1, 1, 291, 967255, 56150820, 56150820, 967255, 291, 1, 1, 797, 29949217, 14971125930, 111359017198, 14971125930, 29949217, 797, 1
Offset: 1

Views

Author

Andrew Howroyd, Nov 08 2019

Keywords

Examples

			Triangle begins:
  1;
  1,   1;
  1,   2,      1;
  1,   6,      6,        1;
  1,  13,     79,       13,        1;
  1,  40,   1499,     1499,       40,      1;
  1, 100,  35317,   257290,    35317,    100,   1;
  1, 291, 967255, 56150820, 56150820, 967255, 291, 1;
  ...
		

Crossrefs

Columns k=0..5 are A000012, A001373, A129524, A185193, A185194, A185303.
Row sums are A329234.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    E(v, x) = {my(r=1/(1-x)); for(i=1, #v, r=serconvol(r, prod(j=1, #v, my(g=gcd(v[i], v[j])); (1 + x^(v[j]/g))^g)/(1 + x))); r}
    Row(n)={my(s=0); forpart(p=n, s+=permcount(p)*E(p, x+O(x^n))); Vec(s/n!)}
    { for(n=1, 8, print(Row(n))) }