cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A001373 Number of functional digraphs (digraphs of functions on n nodes where every node has outdegree 1 and loops of length 1 are forbidden).

Original entry on oeis.org

1, 0, 1, 2, 6, 13, 40, 100, 291, 797, 2273, 6389, 18264, 51916, 148666, 425529, 1221900, 3511507, 10111043, 29142941, 84112009, 243000149, 702758065, 2034150215, 5892907566, 17084615940, 49567063847, 143902155133, 418032946298, 1215076634226, 3533715961160, 10282042126394, 29931877173282, 87173224346464, 253989569994664
Offset: 0

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 70, Table 3.4.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=1 of A329228.

Programs

  • Mathematica
    Needs["Combinatorica`];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,2,30}]],1];CoefficientList[Series[Product[1/(1-x^i)^c[[i]],{i,1,nn-1}],{x,0,nn}],x]  (* after code given by Robert A. Russell in A000081 *) (* Geoffrey Critzer, Oct 12 2012 *)
  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1,n, sumdiv(k,d, d*A[d]) * A[n-k+1] ) );
    v0000081=concat([0], A); \\ A000081
    x='x+O('x^N);  T = Ser(v0000081);
    gf = x/T  / prod(n=1,N, 1 - subst(T,'x,'x^n) );
    v001373 = Vec(gf) \\ Joerg Arndt, Apr 17 2014

Formula

Euler transform of A002862.
G.f.: (x/T(x)) / Product_{n>=1} ( 1 - T(x^n) ) where T(x) is the g.f. of A000081, see the Read reference and the PARI code. - Joerg Arndt, Apr 17 2014

Extensions

Sequence extended by Paul Zimmermann
More terms and better description from Christian G. Bower
More terms added by Joerg Arndt, Apr 17 2014

A350910 Triangle read by rows: T(n,k) is the number of k-regular digraphs on n unlabeled nodes, k = 0..n-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 5, 2, 1, 1, 4, 23, 23, 4, 1, 1, 4, 92, 415, 92, 4, 1, 1, 7, 624, 19041, 19041, 624, 7, 1, 1, 8, 5021, 1104045, 6510087, 1104045, 5021, 8, 1, 1, 12, 47034, 79818336, 2983458766, 2983458766, 79818336, 47034, 12, 1
Offset: 1

Views

Author

Andrew Howroyd, Jan 29 2022

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,   1;
  1, 2,   2,     1;
  1, 2,   5,     2,     1;
  1, 4,  23,    23,     4,   1;
  1, 4,  92,   415,    92,   4, 1;
  1, 7, 624, 19041, 19041, 624, 7, 1;
  ...
		

Crossrefs

Row sums are A350911.
Cf. A051031 (graphs), A329228 (semi-regular), A350912.

A129524 Number of unlabeled digraphs on n vertices such that every vertex has outdegree 2.

Original entry on oeis.org

0, 0, 1, 6, 79, 1499, 35317, 967255, 29949217, 1033242585, 39323062014, 1637375262965, 74075329383599, 3619112881630497, 189953824713590782, 10661151595417930874, 637230479685691806302, 40415532825383300892418, 2711124591869919503655096
Offset: 1

Views

Author

Vladeta Jovovic, May 29 2007

Keywords

Crossrefs

Column k=2 of A329228.

Extensions

Terms a(10) and beyond from Andrew Howroyd, Nov 08 2019

A185193 Number of unlabeled digraphs on n vertices such that every vertex has outdegree 3.

Original entry on oeis.org

0, 0, 0, 1, 13, 1499, 257290, 56150820, 14971125930, 4829990898461, 1864386642498918, 851204815909786099, 454661054439318678263, 281270600132956104641972, 199701092658236514672384967, 161392692052798327047616107614, 147373164027242947672475065773269
Offset: 1

Views

Author

Nathaniel Johnston, Feb 08 2012

Keywords

Crossrefs

Column k=3 of A329228.

Extensions

Terms a(10) and beyond from Andrew Howroyd, Nov 08 2019

A185194 Number of unlabeled digraphs on n vertices such that every vertex has outdegree 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 40, 35317, 56150820, 111359017198, 278086517599356, 877760741062694898, 3482578978170418753715, 17204168691253789080138981, 104690934973509839187285618311, 776311587313178356520412354767734, 6942595716239018207126337605515965388
Offset: 1

Views

Author

Nathaniel Johnston, Feb 08 2012

Keywords

Crossrefs

Column k=4 of A329228.

Extensions

Terms a(10) and beyond from Andrew Howroyd, Nov 08 2019

A185303 Number of unlabeled digraphs on n vertices such that every vertex has outdegree 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 100, 967255, 14971125930, 278086517599356, 6521004095675547914, 197419530111112377546537, 7747427934648623352166753715, 392370903258277676503800999871543, 25436929780226775791085690703723141426, 2090584629532654146005764252197925046719651
Offset: 1

Views

Author

Nathaniel Johnston, Feb 08 2012

Keywords

Crossrefs

Column k=5 of A329228.

Extensions

Terms a(10) and beyond from Andrew Howroyd, Nov 08 2019

A259471 Triangle read by rows: T(n,k) is the number of semi-regular relations on n nodes with each node having out-degree k (0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 19, 66, 19, 1, 1, 47, 916, 916, 47, 1, 1, 130, 16816, 91212, 16816, 130, 1, 1, 343, 373630, 12888450, 12888450, 373630, 343, 1, 1, 951, 9727010, 2411213698, 14334255100, 2411213698, 9727010, 951, 1, 1, 2615, 289374391, 575737451509, 22080097881081, 22080097881081, 575737451509, 289374391, 2615, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Examples

			Triangle begins:
  1;
  1,   1;
  1,   3,     1;
  1,   7,     7,     1;
  1,  19,    66,    19,     1;
  1,  47,   916,   916,    47,   1;
  1, 130, 16816, 91212, 16816, 130, 1;
  ...
		

Crossrefs

Columns k=1..3 are A001372, A003286, A005535.
Cf. A329228.

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, k_] := Product[SeriesCoefficient[Product[g = GCD[v[[i]], v[[j]] ]; (1 + x^(v[[j]]/g) + O[x]^(k + 1))^g, {j, 1, Length[v]}], {x, 0, k}], {i, 1, Length[v]}];
    T[n_, k_] := Module[{s = 0}, Do[s += permcount[p]*edges[p, k], {p, IntegerPartitions[n]}]; s/n!];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v,k)={prod(i=1, #v, polcoef(prod(j=1, #v, my(g=gcd(v[i],v[j])); (1 + x^(v[j]/g) + O(x*x^k))^g), k))}
    T(n,k)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p,k)); s/n!} \\ Andrew Howroyd, Sep 13 2020

Formula

T(n,k) = T(n,n-k). - Andrew Howroyd, Sep 13 2020

Extensions

Terms a(28) and beyond from Andrew Howroyd, Sep 13 2020

A329234 Number of digraphs on n unlabled vertices such that every vertex has the same outdegree.

Original entry on oeis.org

1, 1, 2, 4, 14, 107, 3080, 328126, 114236734, 141361169088, 565835083485352, 8280254429732072354, 401805920591472162735162, 73001963040583041357650757758, 44826822610575086782059677501403310, 104876792026574880566541471182849498480154, 841219618683014295050378892027503163229521608514
Offset: 0

Views

Author

Andrew Howroyd, Nov 08 2019

Keywords

Crossrefs

Row sums of A329228.
Cf. A000273.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    E(v, x) = {my(r=1/(1-x)); for(i=1, #v, r=serconvol(r, prod(j=1, #v, my(g=gcd(v[i], v[j])); (1 + x^(v[j]/g))^g)/(1 + x))); r}
    a(n)={if(n<1, n==0, my(s=0); forpart(p=n, s+=permcount(p)*E(p, x+O(x^n))); vecsum(Vec(s))/n!)}
Showing 1-8 of 8 results.