A001372
Number of unlabeled mappings (or mapping patterns) from n points to themselves; number of unlabeled endofunctions.
Original entry on oeis.org
1, 1, 3, 7, 19, 47, 130, 343, 951, 2615, 7318, 20491, 57903, 163898, 466199, 1328993, 3799624, 10884049, 31241170, 89814958, 258604642, 745568756, 2152118306, 6218869389, 17988233052, 52078309200, 150899223268, 437571896993, 1269755237948, 3687025544605, 10712682919341, 31143566495273, 90587953109272, 263627037547365
Offset: 0
The a(3) = 7 mappings are:
1->1, 2->2, 3->3
1->1, 2->2, 3->1 (equiv. to 1->1, 2->2, 3->2, or 1->1, 2->1, 3->3, etc.)
1->1, 2->3, 3->2
1->1, 2->1, 3->2
1->1, 2->1, 3->1
1->2, 2->3, 3->1
1->2, 2->1, 3->1
- F. Bergeron, G. Labelle, and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 41, 209.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.6.
- R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.401.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 70, Table 3.4.1.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 501 terms from Christian G. Bower)
- A. L. Agore, A. Chirvasitu, and G. Militaru, The set-theoretic Yang-Baxter equation, Kimura semigroups and functional graphs, arXiv:2303.06700 [math.QA], 2023.
- N. G. de Bruijn, Enumeration of mapping patterns, J. Combin. Theory, 12 (1972), 14-20.
- N. G. de Bruijn and D. A. Klarner, Multisets of aperiodic cycles, SIAM J. Algebraic Discrete Methods 3 (1982), no. 3, 359--368. MR0666861(84i:05008).
- Robert L. Davis, The number of structures of finite relations, Proc. Amer. Math. Soc. 4 (1953), 486-495.
- Oscar Defrain, Antonio E. Porreca and Ekaterina Timofeeva, Polynomial-delay generation of functional digraphs up to isomorphism, arXiv:2302.13832 [cs.DS], 2023-2024.
- Oscar Defrain, Antonio E. Porreca and Ekaterina Timofeeva, Polynomial-delay generation of functional digraphs up to isomorphism, Disc. Appl. Math., vol 357 (2024), pp. 24-33.
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, 2009; see page 480
- Alexander Heaton, Songpon Sriwongsa, and Jeb F. Willenbring, Branching from the General Linear Group to the Symmetric Group and the Principal Embedding, Algebraic Combinatorics, vol. 4, issue 2 (2021), p. 189-200.
- Florent Hivert, Jean-Christophe Novelli, and Jean-Yves Thibon, Commutative combinatorial Hopf algebras, arXiv:math/0605262 [math.CO], 2006.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 144
- Sujoy Mukherjee and Petr Vojtěchovský, Minimal representatives of endofunctions, Univ. Denver (2024).
- Ronald C. Read, Note on number of functional digraphs, Math. Ann., vol. 143 (1961), pp. 109-111.
- Marko Riedel, stackexchange.com, Enumeration of functions by Simultaneous Power Group Enumeration (SPGE)
- Marko Riedel, Maple code for sequence using SPGE
- Sara Riva, Factorisation of Discrete Dynamical Systems, Ph.D. Thesis, Univ. Côte d'Azur (France 2023).
- N. J. A. Sloane, Illustration of initial terms
- N. J. A. Sloane, Transforms
- P. R. Stein, Letter to N. J. A. Sloane, Jun 02 1971
-
with(combstruct): M[ 2671 ] := [ F,{F=Set(K), K=Cycle(T), T=Prod(Z,Set(T))},unlabeled ]:
a:=seq(count(M[2671],size=n),n=0..27); # added by W. Edwin Clark, Nov 23 2010
-
Needs["Combinatorica`"];
nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,1,30}]],1];CoefficientList[Series[Product[1/(1-x^i)^c[[i]],{i,1,nn-1}],{x,0,nn}],x] (* after code given by Robert A. Russell in A000081 *) (* Geoffrey Critzer, Oct 12 2012 *)
max = 40; A[n_] := A[n] = If[n <= 1, n, Sum[DivisorSum[j, #*A[#]&]*A[n-j], {j, 1, n-1}]/(n-1)]; H[t_] := Sum[A[n]*t^n, {n, 0, max}]; F = 1 / Product[1 - H[x^n], {n, 1, max}] + O[x]^max; CoefficientList[F, x] (* Jean-François Alcover, Dec 01 2015, after Joerg Arndt *)
-
N=66; A=vector(N+1, j, 1);
for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
A000081=concat([0], A);
H(t)=subst(Ser(A000081, 't), 't, t);
x='x+O('x^N);
F=1/prod(n=1,N, 1 - H(x^n));
Vec(F)
\\ Joerg Arndt, Jul 10 2014
A048888
a(n) = Sum_{m=1..n} T(m,n+1-m), array T as in A048887.
Original entry on oeis.org
0, 1, 2, 4, 7, 13, 23, 42, 76, 139, 255, 471, 873, 1627, 3044, 5718, 10779, 20387, 38673, 73561, 140267, 268065, 513349, 984910, 1892874, 3643569, 7023561, 13557019, 26200181, 50691977, 98182665, 190353369, 369393465, 717457655
Offset: 0
From _Joerg Arndt_, Dec 28 2012: (Start)
There are a(6)=23 compositions p(1)+p(2)+...+p(m)=6 such that p(k)<=p(1)+1:
[ 1] [ 1 1 1 1 1 1 ]
[ 2] [ 1 1 1 1 2 ]
[ 3] [ 1 1 1 2 1 ]
[ 4] [ 1 1 2 1 1 ]
[ 5] [ 1 1 2 2 ]
[ 6] [ 1 2 1 1 1 ]
[ 7] [ 1 2 1 2 ]
[ 8] [ 1 2 2 1 ]
[ 9] [ 2 1 1 1 1 ]
[10] [ 2 1 1 2 ]
[11] [ 2 1 2 1 ]
[12] [ 2 1 3 ]
[13] [ 2 2 1 1 ]
[14] [ 2 2 2 ]
[15] [ 2 3 1 ]
[16] [ 3 1 1 1 ]
[17] [ 3 1 2 ]
[18] [ 3 2 1 ]
[19] [ 3 3 ]
[20] [ 4 1 1 ]
[21] [ 4 2 ]
[22] [ 5 1 ]
[23] [ 6 ]
(End)
-
N = 66; x = 'x + O('x^N);
gf = sum(n=0,N, (1-x^n)*x^n/(1-2*x+x^(n+1)) ) + 'c0;
v = Vec(gf); v[1]-='c0; v
/* Joerg Arndt, Apr 14 2013 */
A329228
Triangle read by rows: T(n,k) is the number of digraphs on n unlabeled vertices such that every vertex has outdegree k, n >= 1, 0 <= k < n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 13, 79, 13, 1, 1, 40, 1499, 1499, 40, 1, 1, 100, 35317, 257290, 35317, 100, 1, 1, 291, 967255, 56150820, 56150820, 967255, 291, 1, 1, 797, 29949217, 14971125930, 111359017198, 14971125930, 29949217, 797, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 6, 6, 1;
1, 13, 79, 13, 1;
1, 40, 1499, 1499, 40, 1;
1, 100, 35317, 257290, 35317, 100, 1;
1, 291, 967255, 56150820, 56150820, 967255, 291, 1;
...
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
E(v, x) = {my(r=1/(1-x)); for(i=1, #v, r=serconvol(r, prod(j=1, #v, my(g=gcd(v[i], v[j])); (1 + x^(v[j]/g))^g)/(1 + x))); r}
Row(n)={my(s=0); forpart(p=n, s+=permcount(p)*E(p, x+O(x^n))); Vec(s/n!)}
{ for(n=1, 8, print(Row(n))) }
A129524
Number of unlabeled digraphs on n vertices such that every vertex has outdegree 2.
Original entry on oeis.org
0, 0, 1, 6, 79, 1499, 35317, 967255, 29949217, 1033242585, 39323062014, 1637375262965, 74075329383599, 3619112881630497, 189953824713590782, 10661151595417930874, 637230479685691806302, 40415532825383300892418, 2711124591869919503655096
Offset: 1
A185193
Number of unlabeled digraphs on n vertices such that every vertex has outdegree 3.
Original entry on oeis.org
0, 0, 0, 1, 13, 1499, 257290, 56150820, 14971125930, 4829990898461, 1864386642498918, 851204815909786099, 454661054439318678263, 281270600132956104641972, 199701092658236514672384967, 161392692052798327047616107614, 147373164027242947672475065773269
Offset: 1
A185194
Number of unlabeled digraphs on n vertices such that every vertex has outdegree 4.
Original entry on oeis.org
0, 0, 0, 0, 1, 40, 35317, 56150820, 111359017198, 278086517599356, 877760741062694898, 3482578978170418753715, 17204168691253789080138981, 104690934973509839187285618311, 776311587313178356520412354767734, 6942595716239018207126337605515965388
Offset: 1
A185303
Number of unlabeled digraphs on n vertices such that every vertex has outdegree 5.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 100, 967255, 14971125930, 278086517599356, 6521004095675547914, 197419530111112377546537, 7747427934648623352166753715, 392370903258277676503800999871543, 25436929780226775791085690703723141426, 2090584629532654146005764252197925046719651
Offset: 1
A362899
Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of fixed-point-free endofunctions on an n-set with k endofunctions.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 9, 6, 1, 1, 0, 1, 22, 162, 13, 1, 1, 0, 1, 63, 3935, 4527, 40, 1, 1, 0, 1, 136, 81015, 1497568, 172335, 100, 1, 1, 0, 1, 302, 1369101, 384069023, 883538845, 7861940, 291, 1, 1, 0, 1, 580, 19601383, 78954264778, 3450709120355, 725601878962, 416446379, 797, 1
Offset: 0
Array begins:
==============================================================
n/k| 0 1 2 3 4 5 ...
---+----------------------------------------------------------
0 | 1 1 1 1 1 1 ...
1 | 1 0 0 0 0 0 ...
2 | 1 1 1 1 1 1 ...
3 | 1 2 9 22 63 136 ...
4 | 1 6 162 3935 81015 1369101 ...
5 | 1 13 4527 1497568 384069023 78954264778 ...
6 | 1 40 172335 883538845 3450709120355 10786100835304758 ...
...
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(v,m) = {prod(i=1, #v, my(g=gcd(v[i],m), e=v[i]/g); (sum(j=1, #v, my(t=v[j]); if(e%(t/gcd(t,m))==0, t)) - 1)^g)}
T(n,k) = {if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q) * polcoef(exp(sum(m=1, k, K(q,m)*x^m/m, O(x*x^k))), k)); s/n!)}
A036360
a(n) = Sum_{k=1..n} n! * n^(n-k+1) / (n-k)!.
Original entry on oeis.org
0, 1, 12, 153, 2272, 39225, 776736, 17398969, 435538944, 12058401393, 366021568000, 12090393761721, 431832459644928, 16585599200808937, 681703972229640192, 29858718555221585625, 1388451967046195347456, 68316647610168842824161, 3546179063131198669848576, 193670918442059606406896473
Offset: 0
Example: Consider the map [1,2,3,4] -> [2,3,4,4]. The trajectory of node one is [1,2,3,4]. Hence the tail length is three and the cycle size is one, a fixed point.
- F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 30, Exercise 1.15a.
- P. Flajolet and A. Odlyzko, Random Mapping Statistics, INRIA RR 1114.
-
a := proc(n) local k; add(n!*n^(n-k+1)/(n-k)!, k=0..n); end;
# Alternative, e.g.f.:
T := -LambertW(-x): egf := (T + T^2)/(1 - T)^4: ser := series(egf, x, 22):
seq(n!*coeff(ser, x, n), n = 0..19); # Peter Luschny, Jul 20 2024
-
Table[Sum[n!*n^(n-k+1)/(n-k)!, {k, 1, n}], {n, 0, 19}] (* James C. McMahon, Feb 07 2024 *)
a[n_] := n E^n Gamma[n + 1, n] - n^(n + 1);
Table[a[n], {n, 0, 19}] (* Peter Luschny, Jul 20 2024 *)
-
a(n) = sum(k=1, n, n! * n^(n-k+1) / (n-k)!) \\ Andrew Howroyd, Jan 06 2024
-
def a(n):
total_sum = 0
for k in range(1, n + 1):
term = (math.factorial(n) / math.factorial(n - k))*(k**2)*(n**(n - k))
total_sum += term
return total_sum
# Brian P Hawkins, Jan 06 2024
Offset set to 0 and a(0) = 0 prepended by
Marko Riedel, Jul 20 2024
A217897
Triangular array read by rows. T(n,k) is the number of unlabeled functions on n nodes that have exactly k fixed points, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 2, 3, 1, 1, 6, 7, 4, 1, 1, 13, 19, 9, 4, 1, 1, 40, 47, 27, 10, 4, 1, 1, 100, 130, 68, 29, 10, 4, 1, 1, 291, 343, 195, 76, 30, 10, 4, 1, 1, 797, 951, 523, 220, 78, 30, 10, 4, 1, 1, 2273, 2615, 1477, 600, 228, 79, 30, 10, 4, 1, 1, 6389, 7318, 4096, 1708, 625, 230, 79, 30, 10, 4, 1, 1
Offset: 0
Triangle begins:
1;
0, 1;
1, 1, 1;
2, 3, 1, 1;
6, 7, 4, 1, 1;
13, 19, 9, 4, 1, 1;
40, 47, 27, 10, 4, 1, 1;
100, 130, 68, 29, 10, 4, 1, 1;
291, 343, 195, 76, 30, 10, 4, 1, 1;
797, 951, 523, 220, 78, 30, 10, 4, 1, 1;
2273, 2615, 1477, 600, 228, 79, 30, 10, 4, 1, 1;
-
Needs["Combinatorica`"]; nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];cfd=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,2,30}]],1]; CoefficientList[Series[Product[1/(1-x^i)^cfd[[i]]/(1-y x^i)^rt[[i]],{i,1,nn-1}],{x,0,10}],{x,y}]//Grid (* after code given by Robert A. Russell in A000081 *)
Showing 1-10 of 13 results.
Comments