cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A329228 Triangle read by rows: T(n,k) is the number of digraphs on n unlabeled vertices such that every vertex has outdegree k, n >= 1, 0 <= k < n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 13, 79, 13, 1, 1, 40, 1499, 1499, 40, 1, 1, 100, 35317, 257290, 35317, 100, 1, 1, 291, 967255, 56150820, 56150820, 967255, 291, 1, 1, 797, 29949217, 14971125930, 111359017198, 14971125930, 29949217, 797, 1
Offset: 1

Views

Author

Andrew Howroyd, Nov 08 2019

Keywords

Examples

			Triangle begins:
  1;
  1,   1;
  1,   2,      1;
  1,   6,      6,        1;
  1,  13,     79,       13,        1;
  1,  40,   1499,     1499,       40,      1;
  1, 100,  35317,   257290,    35317,    100,   1;
  1, 291, 967255, 56150820, 56150820, 967255, 291, 1;
  ...
		

Crossrefs

Columns k=0..5 are A000012, A001373, A129524, A185193, A185194, A185303.
Row sums are A329234.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    E(v, x) = {my(r=1/(1-x)); for(i=1, #v, r=serconvol(r, prod(j=1, #v, my(g=gcd(v[i], v[j])); (1 + x^(v[j]/g))^g)/(1 + x))); r}
    Row(n)={my(s=0); forpart(p=n, s+=permcount(p)*E(p, x+O(x^n))); Vec(s/n!)}
    { for(n=1, 8, print(Row(n))) }

A185193 Number of unlabeled digraphs on n vertices such that every vertex has outdegree 3.

Original entry on oeis.org

0, 0, 0, 1, 13, 1499, 257290, 56150820, 14971125930, 4829990898461, 1864386642498918, 851204815909786099, 454661054439318678263, 281270600132956104641972, 199701092658236514672384967, 161392692052798327047616107614, 147373164027242947672475065773269
Offset: 1

Views

Author

Nathaniel Johnston, Feb 08 2012

Keywords

Crossrefs

Column k=3 of A329228.

Extensions

Terms a(10) and beyond from Andrew Howroyd, Nov 08 2019

A185194 Number of unlabeled digraphs on n vertices such that every vertex has outdegree 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 40, 35317, 56150820, 111359017198, 278086517599356, 877760741062694898, 3482578978170418753715, 17204168691253789080138981, 104690934973509839187285618311, 776311587313178356520412354767734, 6942595716239018207126337605515965388
Offset: 1

Views

Author

Nathaniel Johnston, Feb 08 2012

Keywords

Crossrefs

Column k=4 of A329228.

Extensions

Terms a(10) and beyond from Andrew Howroyd, Nov 08 2019

A185303 Number of unlabeled digraphs on n vertices such that every vertex has outdegree 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 100, 967255, 14971125930, 278086517599356, 6521004095675547914, 197419530111112377546537, 7747427934648623352166753715, 392370903258277676503800999871543, 25436929780226775791085690703723141426, 2090584629532654146005764252197925046719651
Offset: 1

Views

Author

Nathaniel Johnston, Feb 08 2012

Keywords

Crossrefs

Column k=5 of A329228.

Extensions

Terms a(10) and beyond from Andrew Howroyd, Nov 08 2019

A003286 Number of semi-regular digraphs (with loops) on n unlabeled nodes with each node having out-degree 2.

Original entry on oeis.org

1, 7, 66, 916, 16816, 373630, 9727010, 289374391, 9677492899, 359305262944, 14663732271505, 652463078546373, 31435363120551013, 1630394318463367718, 90570555840053284171, 5365261686125108336540, 337616338011820295406352, 22490263897737210321234701, 1581153614004788257326876764
Offset: 2

Views

Author

Keywords

Comments

The directed graphs in this sequence need not be connected, but each node must have out-degree 2. - Sean A. Irvine, Apr 09 2015

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A259471.
Cf. A129524.

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, k_] := Product[SeriesCoefficient[Product[g = GCD[v[[i]], v[[j]]]; (1 + x^(v[[j]]/g) + O[x]^(k + 1))^g, {j, 1, Length[v]}], {x, 0, k}], {i, 1, Length[v]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*edges[p, 2], {p, IntegerPartitions[n]}]; s/n!];
    Table[a[n], {n, 2, 20}] (* Jean-François Alcover, Jul 20 2022, after Andrew Howroyd in A259471 *)

Extensions

a(7)-a(9) from Sean A. Irvine, Apr 11 2015
Terms a(10) and beyond from Andrew Howroyd, Sep 13 2020
Showing 1-5 of 5 results.