cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329256 Expansion of e.g.f. exp(Sum_{k>=1} x^(k^2) / (k^2)!).

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 16, 36, 106, 443, 1796, 6161, 23816, 122266, 643644, 2934296, 14002237, 83835433, 532282819, 3005258539, 17039094646, 115611682810, 848428608644, 5682350940168, 37297365940462, 281594230420802, 2323660209441962, 17929392395804072
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[Exp[Sum[x^(k^2)/(k^2)!, {k, 1, Floor[nmax^(1/2)] + 1}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Boole[IntegerQ[k^(1/2)]] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 27}]
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, sqrtint(N), x^k^2/(k^2)!)))) \\ Seiichi Manyama, Apr 29 2022
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, sqrtint(n), binomial(n-1, k^2-1)*a(n-k^2))); \\ Seiichi Manyama, Apr 29 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A010052(k) * a(n-k).