A329294
Numbers whose digits are in nondecreasing order in bases 4 and 5.
Original entry on oeis.org
0, 1, 2, 3, 6, 7, 31, 43, 63, 343
Offset: 1
a(1) = 0 = 0_4 = 0_5
a(2) = 1 = 1_4 = 1_5
a(3) = 2 = 2_4 = 2_5
a(4) = 3 = 3_4 = 3_5
a(5) = 6 = 12_4 = 11_5
a(6) = 7 = 13_4 = 12_5
a(7) = 31 = 133_4 = 111_5
a(8) = 43 = 223_4 = 133_5
a(9) = 63 = 333_4 = 223_5
a(10) = 343 = 11113_4 = 2333_5
Numbers whose digits are in nondecreasing order in bases b and b+1: this sequence (b=4),
A329295 (b=5),
A329296 (b=6),
A329297 (b=7),
A329298 (b=8),
A329299 (b=9). See
A329300 for the (apparently) largest term of each of these sequences.
-
isnondec(v) = (#v==0) || (#select(x->(x<0), vector(#v-1, k, v[k+1]-v[k])) == 0);
isok(n) = isnondec(digits(n, 4)) && isnondec(digits(n, 5)); \\ Michel Marcus, Nov 11 2019
A329295
Numbers whose digits are in nondecreasing order in bases 5 and 6.
Original entry on oeis.org
0, 1, 2, 3, 4, 7, 8, 9, 14, 43, 44, 64, 93, 94, 784, 1562, 1563, 1564, 1569, 1599, 3124, 9374
Offset: 1
a(1) = 0 = 0_5 = 0_6
a(2) = 1 = 1_5 = 1_6
a(3) = 2 = 2_5 = 2_6
a(4) = 3 = 3_5 = 3_6
a(5) = 4 = 4_5 = 4_6
a(6) = 7 = 12_5 = 11_6
a(7) = 8 = 13_5 = 12_6
a(8) = 9 = 14_5 = 13_6
a(9) = 14 = 24_5 = 22_6
a(10) = 43 = 133_5 = 111_6
a(11) = 44 = 134_5 = 112_6
a(12) = 64 = 224_5 = 144_6
a(13) = 93 = 333_5 = 233_6
a(14) = 94 = 334_5 = 234_6
a(15) = 784 = 11114_5 = 3344_6
a(16) = 1562 = 22222_5 = 11122_6
a(17) = 1563 = 22223_5 = 11123_6
a(18) = 1564 = 22224_5 = 11124_6
a(19) = 1569 = 22234_5 = 11133_6
a(20) = 1599 = 22344_5 = 11223_6
a(21) = 3124 = 44444_5 = 22244_6
a(22) = 9374 = 244444_5 = 111222_6
Numbers whose digits are in nondecreasing order in bases b and b+1:
A329294 (b=4), this sequence (b=5),
A329296 (b=6),
A329297 (b=7),
A329298 (b=8),
A329299 (b=9). See
A329300 for the (apparently) largest term of each of these sequences.
A329296
Numbers whose digits are in nondecreasing order in bases 6 and 7.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 16, 17, 57, 58, 59, 65, 89, 130, 131, 172, 173, 179, 1600, 1601, 3203
Offset: 1
a(1) = 0 = 0_6 = 0_7
a(2) = 1 = 1_6 = 1_7
a(3) = 2 = 2_6 = 2_7
a(4) = 3 = 3_6 = 3_7
a(5) = 4 = 4_6 = 4_7
a(6) = 5 = 5_6 = 5_7
a(7) = 8 = 12_6 = 11_7
a(8) = 9 = 13_6 = 12_7
a(9) = 10 = 14_6 = 13_7
a(10) = 11 = 15_6 = 14_7
a(11) = 16 = 24_6 = 22_7
a(12) = 17 = 25_6 = 23_7
a(13) = 57 = 133_6 = 111_7
a(14) = 58 = 134_6 = 112_7
a(15) = 59 = 135_6 = 113_7
a(16) = 65 = 145_6 = 122_7
a(17) = 89 = 225_6 = 155_7
a(18) = 130 = 334_6 = 244_7
a(19) = 131 = 335_6 = 245_7
a(20) = 172 = 444_6 = 334_7
a(21) = 173 = 445_6 = 335_7
a(22) = 179 = 455_6 = 344_7
a(23) = 1600 = 11224_6 = 4444_7
a(24) = 1601 = 11225_6 = 4445_7
a(25) = 3203 = 22455_6 = 12224_7
Intersection of
A023748 (base 6) and
A023749 (base 7). Numbers whose digits are in nondecreasing order in bases b and b+1:
A329294 (b=4),
A329295 (b=5), this sequence (b=6),
A329297 (b=7),
A329298 (b=8),
A329299 (b=9). See
A329300 for the (apparently) largest term of each of these sequences.
A329297
Numbers whose digits are in nondecreasing order in bases 7 and 8.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 18, 19, 20, 27, 73, 74, 75, 76, 82, 83, 118, 146, 173, 174, 228, 229, 230, 237, 293, 587, 685, 804, 2925, 14062, 42131, 42132, 42139, 411942
Offset: 1
Sequence includes 7 terms that are 1-digit numbers in both bases, 9 terms that are 2-digit numbers in both bases, and the following:
a(17) = 73 = 133_7 = 111_8
a(18) = 74 = 134_7 = 112_8
a(19) = 75 = 135_7 = 113_8
a(20) = 76 = 136_7 = 114_8
a(21) = 82 = 145_7 = 122_8
a(22) = 83 = 146_7 = 123_8
a(23) = 118 = 226_7 = 166_8
a(24) = 146 = 266_7 = 222_8
a(25) = 173 = 335_7 = 255_8
a(26) = 174 = 336_7 = 256_8
a(27) = 228 = 444_7 = 344_8
a(28) = 229 = 445_7 = 345_8
a(29) = 230 = 446_7 = 346_8
a(30) = 237 = 456_7 = 355_8
a(31) = 293 = 566_7 = 445_8
a(32) = 587 = 1466_7 = 1113_8
a(33) = 685 = 1666_7 = 1255_8
a(34) = 804 = 2226_7 = 1444_8
a(35) = 2925 = 11346_7 = 5555_8
a(36) = 14062 = 55666_7 = 33356_8
a(37) = 42131 = 233555_7 = 122223_8
a(38) = 42132 = 233556_7 = 122224_8
a(39) = 42139 = 233566_7 = 122233_8
a(40) = 411942 = 3333666_7 = 1444446_8
Intersection of
A023749 (base 7) and
A023750 (base 8). Numbers whose digits are in nondecreasing order in bases b and b+1:
A329294 (b=4),
A329295 (b=5),
A329296 (b=6), this sequence (b=7),
A329298 (b=8),
A329299 (b=9). See
A329300 for the (apparently) largest term of each of these sequences.
A329300
a(n) is (apparently) the largest number whose digits are in nondecreasing order in bases n and n+1.
Original entry on oeis.org
1, 26, 343, 9374, 3203, 411942, 1203135, 12555566, 23577999, 475857425, 78497711, 1840723325, 44509735045, 11166989789, 9181683711, 1240214273284785, 93417582527, 538955006315, 81324126339, 123196100516, 3851792910943, 5652942368056, 4967531840023463
Offset: 2
The only numbers whose digits are in nondecreasing order in base 2 are the numbers of the form 2^k-1 (k >= 0); of those, the only numbers whose digits are in nondecreasing order in base 3 are 0 = 0_2 = 0_3 and 1 = 1_2 = 1_3. The larger of these numbers is 1, so a(2) = 1.
Up to at least 10^10000, the only numbers whose digits are in nondecreasing order in both base 3 and base 4 are 0 = 0_3 = 0_4, 1 = 1_3 = 1_4, 2 = 2_3 = 2_4, 5 = 12_3 = 11_4, and 26 = 222_3 = 122_4. The largest of these numbers is 26, so a(3) = 26.
A329294 lists the numbers (up to at least 10^10000) whose digits are in nondecreasing order in both base 4 and base 5, the largest of which is 343, so a(4) = 343.
The following table lists the values of a(n) for n = 2..24 with their base-n and base-(n+1) expansions (where the letters a, b, c, etc. represent the digit values 10, 11, 12, etc., respectively):
.
n | a(n) in base 10 | a(n) in base n | a(n) in base n+1
---+------------------+------------------+-----------------
2 | 1 | 1_2 | 1_3
3 | 26 | 222_3 | 122_4
4 | 343 | 11113_4 | 2333_5
5 | 9374 | 244444_5 | 111222_6
6 | 3203 | 22455_6 | 12224_7
7 | 411942 | 3333666_7 | 1444446_8
8 | 1203135 | 4455677_8 | 2233346_9
9 | 12555566 | 25555888_9 | 12555566_10
10 | 23577999 | 23577999_10 | 12344555_11
11 | 475857425 | 2246777aa_11 | 113444555_12
12 | 78497711 | 22356abb_12 | 13355666_13
13 | 1840723325 | 23447abcc_13 | 136677777_14
14 | 44509735045 | 22234ccccd_14 | 125789999a_15
15 | 11166989789 | 455577aae_15 | 2999abddd_16
16 | 9181683711 | 223455fff_16 | 1566aadee_17
17 | 1240214273284785 | 223333444588g_17 | 115669aaaffff_18
18 | 93417582527 | 88aaabhhh_18 | 599cdeefg_19
19 | 538955006315 | 1cdhhhiiii_19 | 111138ffff_20
20 | 81324126339 | 33adfffgj_20 | 23347ffff_21
21 | 123196100516 | 3588ghjkk_21 | 258cfffgg_22
22 | 3851792910943 | 34449ijlll_22 | 234677888c_23
23 | 5652942368056 | 33466ikmmm_23 | 238ceefffg_24
24 | 4967531840023463 | 3688bdfkkmmn_24 | 22255aaabcdd_25
Showing 1-5 of 5 results.
Comments