A329320 a(n) = Sum_{k=0..floor(log_2(n))} 1 - A035263(1 + floor(n/2^k)).
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 1, 2, 2, 2, 2, 3, 2, 3, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 3
Offset: 0
Links
- Mikhail Kurkov, Table of n, a(n) for n = 0..8191 [verification needed]
Programs
-
PARI
a(n) = if (n==0, 0, a(floor(n/2)) + valuation(n+1, 2) % 2); \\ Michel Marcus, Nov 13 2019
-
PARI
a(n)=my(s,t); while(n, n>>=valuation(n,2); t=valuation(n+1,2); s+=(t+1)\2; n>>=t); s \\ Charles R Greathouse IV, Oct 14 2021
Formula
a(n) = a(floor(n/2)) + 1 - A035263(n+1) for n>0 with a(0)=0.
a(2^m+k) = a(k mod 2^(m-1)) + 1 for 0<=k<2^m, m>0 with a(0)=0, a(1)=1.
Comments