cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A328906 Decimal expansion of the solution x = 0.4895363211996... to 1 + 2^x = 6^x.

Original entry on oeis.org

4, 8, 9, 5, 3, 6, 3, 2, 1, 1, 9, 9, 6, 4, 9, 4, 8, 8, 6, 8, 9, 8, 7, 5, 3, 1, 6, 8, 2, 2, 6, 5, 0, 1, 8, 9, 4, 0, 3, 5, 8, 6, 5, 1, 5, 7, 7, 1, 9, 1, 2, 1, 2, 7, 8, 4, 6, 4, 3, 6, 6, 7, 8, 6, 1, 9, 2, 5, 5, 6, 2, 8, 2, 5, 5, 8, 6, 6, 8, 4, 4, 8, 2, 3, 5, 0, 9, 7, 2, 4, 0, 4, 3, 3, 9, 0, 0, 5, 0
Offset: 0

Views

Author

M. F. Hasler, Nov 11 2019

Keywords

Examples

			0.489536321199649488689875316822650189403586515771912127846436678619255628...
		

Crossrefs

Cf. A329336 (continued fraction).
Cf. A242208 (1 + 2^x = 4^x), A328900 (2^x + 3^x = 4^x), A328904 (1 + 3^x = 5^x), A328905 (1 + 2^x = 5^x), A328907 (1 + 3^x = 6^x).

Programs

  • Mathematica
    RealDigits[x /. FindRoot[1 + 2^x == 6^x, {x, 1}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Jun 28 2023 *)
  • PARI
    print(c=solve(x=0,1, 1+2^x-6^x)); digits(c\.1^default(realprecision))[^-1] \\ [^-1] to discard possibly incorrect last digit. Use e.g. \p999 to get more digits. - M. F. Hasler, Oct 31 2019

A329920 Smallest k such that 6*k*A121940(n)-1 and 6*k*A121940(n)+1 are twin primes.

Original entry on oeis.org

1, 2, 2, 15, 36, 10, 13, 26, 30, 228, 24, 138, 520, 59, 110, 456, 700, 670, 146, 300, 390, 53, 2335, 340, 159, 340, 65, 475, 785, 1145, 759, 3557, 490, 169, 990, 1527, 704, 3379, 1426, 1927, 2397, 600, 1603, 4809, 9815, 58, 35, 364, 361, 123, 2197, 4054, 1867, 1827, 5048
Offset: 1

Views

Author

Pierre CAMI, Nov 24 2019

Keywords

Examples

			A121940(1)=7, 6*1*7-1=41, 41 and 43 are twin primes so a(1)=1.
A121940(2)=91, 6*2*91-1=1091, 1091 and 1093 are twin primes so a(2)=2.
		

Crossrefs

Programs

  • PARI
    lista(nn) = {my(pp = 1); forprime (p = 1, nn, if (Mod(p, 6) == +1, pp *= p; my(k=1); while (!isprime(6*k*pp-1) || !isprime(6*k*pp+1), k++); print1(k, ", ");););} \\ Michel Marcus, Nov 25 2019
Showing 1-2 of 2 results.