A329348 The least significant nonzero digit in the primorial base expansion of primorial inflation of n, A108951(n).
1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 6, 2, 1, 2, 1, 4, 6, 2, 1, 3, 2, 2, 1, 4, 1, 5, 1, 1, 6, 2, 8, 4, 1, 2, 6, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 4, 6, 4, 1, 2, 4, 8, 6, 2, 1, 3, 1, 2, 3, 2, 13, 12, 1, 4, 6, 5, 1, 3, 1, 2, 5, 4, 2, 12, 1, 2, 1, 2, 1, 2, 11, 2, 6, 8, 1, 2, 6, 4, 6, 2, 7, 2, 1, 2, 10, 1, 1, 12, 1, 8, 4
Offset: 1
Keywords
Examples
For n = 24 = 2^3 * 3, A108951(24) = A034386(2)^3 * A034386(3) = 2^3 * 6 = 48 = 1*30 + 3*6, and as the factor of the least primorial in the sum is 3, we have a(24) = 3.
Links
Crossrefs
Programs
-
PARI
A034386(n) = prod(i=1, primepi(n), prime(i)); A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) }; \\ From A108951 A276088(n) = { my(e=0, p=2); while(n && !(e=(n%p)), n = n/p; p = nextprime(1+p)); (e); }; A329348(n) = A276088(A108951(n));
-
PARI
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; A324886(n) = A276086(A108951(n)); A067029(n) = if(1==n, 0, factor(n)[1, 2]); \\ From A067029 A329348(n) = A067029(A324886(n));
-
PARI
A002110(n) = prod(i=1, n, prime(i)); A329348(n) = if(1==n, n, my(f=factor(n), p=nextprime(1+vecmax(f[, 1]))); prod(i=1, #f~, A002110(primepi(f[i, 1]))^(f[i, 2]-(#f~==i)))%p); \\ Antti Karttunen, Jan 15 2020
Formula
Extensions
Name changed by Antti Karttunen, Jan 17 2020
Comments