A329372 Dirichlet convolution of the identity function with A156552.
0, 1, 2, 5, 4, 12, 8, 17, 12, 22, 16, 44, 32, 40, 32, 49, 64, 61, 128, 78, 56, 76, 256, 132, 32, 142, 50, 136, 512, 152, 1024, 129, 104, 274, 88, 209, 2048, 532, 188, 230, 4096, 256, 8192, 252, 148, 1048, 16384, 356, 80, 159, 356, 454, 32768, 240, 160, 392, 680, 2078, 65536, 504, 131072, 4128, 248, 321, 280, 464, 262144, 858, 1328, 400
Offset: 1
Keywords
Links
Programs
-
PARI
A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 A329372(n) = sumdiv(n,d,(n/d)*A156552(d));
-
PARI
A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1]))); A297167(n) = if(1==n, 0, (A061395(n) + (bigomega(n)-omega(n)) - 1)); A297112(n) = if(1==n,0,2^A297167(n)); A329372(n) = sumdiv(n,d,sigma(n/d)*A297112(d));
Comments