cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A329374 a(1) = 0; for n > 1, a(n) = A000265(A329372(n)), where A329372 is Dirichlet convolution of the identity function with A156552.

Original entry on oeis.org

0, 1, 1, 5, 1, 3, 1, 17, 3, 11, 1, 11, 1, 5, 1, 49, 1, 61, 1, 39, 7, 19, 1, 33, 1, 71, 25, 17, 1, 19, 1, 129, 13, 137, 11, 209, 1, 133, 47, 115, 1, 1, 1, 63, 37, 131, 1, 89, 5, 159, 89, 227, 1, 15, 5, 49, 85, 1039, 1, 63, 1, 129, 31, 321, 35, 29, 1, 429, 83, 25, 1, 605, 1, 4115, 111, 409, 15, 101, 1, 307, 45, 8213, 1, 13, 65, 8203, 655, 179, 1, 335, 25
Offset: 1

Views

Author

Antti Karttunen, Nov 12 2019

Keywords

Crossrefs

Programs

Formula

a(1) = 0; and for n > 1, a(n) = A000265(A329372(n)).

A329347 Dirichlet convolution of the identity function with bigomega.

Original entry on oeis.org

0, 1, 1, 4, 1, 7, 1, 11, 5, 9, 1, 23, 1, 11, 10, 26, 1, 28, 1, 31, 12, 15, 1, 59, 7, 17, 18, 39, 1, 54, 1, 57, 16, 21, 14, 87, 1, 23, 18, 81, 1, 68, 1, 55, 43, 27, 1, 135, 9, 52, 22, 63, 1, 94, 18, 103, 24, 33, 1, 166, 1, 35, 53, 120, 20, 96, 1, 79, 28, 90, 1, 218, 1, 41, 59, 87, 20, 110, 1, 187, 58, 45, 1, 212, 24, 47, 34, 147, 1, 207, 22
Offset: 1

Views

Author

Antti Karttunen, Nov 12 2019

Keywords

Crossrefs

Programs

  • PARI
    A329347(n) = sumdiv(n,d,(n/d)*bigomega(d));

Formula

a(n) = Sum_{d|n} d * A001222(n/d).

A329373 Dirichlet convolution of the identity function with A322993.

Original entry on oeis.org

0, 1, 1, 5, 1, 10, 1, 17, 6, 16, 1, 40, 1, 26, 13, 49, 1, 49, 1, 66, 19, 46, 1, 124, 8, 80, 25, 108, 1, 114, 1, 129, 31, 148, 17, 185, 1, 278, 49, 206, 1, 182, 1, 192, 65, 538, 1, 340, 10, 111, 85, 330, 1, 190, 25, 336, 151, 1056, 1, 428, 1, 2082, 97, 321, 35, 318, 1, 606, 283, 258, 1, 557, 1, 4136, 87, 1128, 23, 530, 1, 566, 90, 8236, 1, 684, 55, 16430
Offset: 1

Views

Author

Antti Karttunen, Nov 12 2019

Keywords

Comments

Equally, Dirichlet convolution of sigma (A000203) with A322994 (Möbius transform of A322993).

Crossrefs

Programs

  • PARI
    A000265(n) = (n/2^valuation(n, 2));
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A322993(n) = if(1==n,0,A000265(A156552(n)));
    A329373(n) = sumdiv(n,d,(n/d)*A322993(d));

Formula

a(n) = Sum_{d|n} d * A322993(n/d).
a(n) = Sum_{d|n} A000203(n/d) * A322994(d).

A329371 Dirichlet convolution of the identity function with A246277.

Original entry on oeis.org

0, 1, 1, 4, 1, 8, 1, 12, 5, 12, 1, 28, 1, 16, 11, 32, 1, 37, 1, 44, 15, 24, 1, 80, 7, 28, 19, 60, 1, 82, 1, 80, 21, 36, 15, 128, 1, 40, 27, 128, 1, 114, 1, 92, 49, 48, 1, 208, 9, 89, 33, 108, 1, 146, 21, 176, 39, 60, 1, 284, 1, 64, 69, 192, 25, 174, 1, 140, 45, 170, 1, 364, 1, 76, 70, 156, 21, 210, 1, 336, 65, 84, 1, 396, 33, 88, 55, 272, 1, 368, 25, 188, 63
Offset: 1

Views

Author

Antti Karttunen, Nov 12 2019

Keywords

Crossrefs

Programs

  • PARI
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2);
    A329371(n) = sumdiv(n,d,(n/d)*A246277(d));

Formula

a(n) = Sum_{d|n} d * A246277(n/d).
Showing 1-4 of 4 results.