cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A323599 Dirichlet convolution of the identity function with omega.

Original entry on oeis.org

0, 1, 1, 3, 1, 7, 1, 7, 4, 9, 1, 19, 1, 11, 10, 15, 1, 25, 1, 25, 12, 15, 1, 43, 6, 17, 13, 31, 1, 54, 1, 31, 16, 21, 14, 67, 1, 23, 18, 57, 1, 68, 1, 43, 37, 27, 1, 91, 8, 49, 22, 49, 1, 79, 18, 71, 24, 33, 1, 142, 1, 35, 45, 63, 20, 96, 1, 61, 28, 90, 1, 151, 1, 41, 55
Offset: 1

Views

Author

Torlach Rush, Jan 18 2019

Keywords

Comments

a(n) = omega(n) = 1 iff n is prime.
a(n) = A323600(n) = 1 iff n is prime.
a(n) = A323600(n) - 1 = 1 iff n is the square of a prime.
a(n) = A323600(n) - 2 = 2 iff n is a squarefree semiprime.
a(n) = A323600(n) - (p + 2) if n is the cube of a prime p.

Crossrefs

Inverse Möbius transform of A069359.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(d*nops(factorset(n/d)), d=divisors(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 28 2019
  • Mathematica
    Table[DivisorSum[n, # PrimeNu[n/#] &], {n, 75}] (* Michael De Vlieger, Jan 27 2019 *)
  • PARI
    a(n) = sumdiv(n, d, d*omega(n/d)); \\ Michel Marcus, Jan 22 2019

Formula

a(n) = Sum_{d|n} d * A001221(n/d).
a(n) = Sum_{p|n} sigma(n/p) where p is prime and sigma(n) = A000203(n). - Ridouane Oudra, Apr 28 2019
a(n) = Sum_{d|n} A069359(d), a(n) = A276085(A329380(n)). - Antti Karttunen, Nov 12 2019
From Torlach Rush, Mar 23 2024: (Start)
For p in primes: (Start)
a(p^(k+1)) = a(p^k) + p^k, k >= 0.
a(p^2) = p + 1.
(End)
a(2^k) = 2^k - 1, k >= 0.
(End)

A329371 Dirichlet convolution of the identity function with A246277.

Original entry on oeis.org

0, 1, 1, 4, 1, 8, 1, 12, 5, 12, 1, 28, 1, 16, 11, 32, 1, 37, 1, 44, 15, 24, 1, 80, 7, 28, 19, 60, 1, 82, 1, 80, 21, 36, 15, 128, 1, 40, 27, 128, 1, 114, 1, 92, 49, 48, 1, 208, 9, 89, 33, 108, 1, 146, 21, 176, 39, 60, 1, 284, 1, 64, 69, 192, 25, 174, 1, 140, 45, 170, 1, 364, 1, 76, 70, 156, 21, 210, 1, 336, 65, 84, 1, 396, 33, 88, 55, 272, 1, 368, 25, 188, 63
Offset: 1

Views

Author

Antti Karttunen, Nov 12 2019

Keywords

Crossrefs

Programs

  • PARI
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2);
    A329371(n) = sumdiv(n,d,(n/d)*A246277(d));

Formula

a(n) = Sum_{d|n} d * A246277(n/d).

A329346 a(n) = A322356(A324886(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 5, 7, 1, 1, 1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 7, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 7, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 19, 1, 1, 1, 1, 13, 1, 7, 1, 1, 13, 1, 1, 1, 1, 1, 7, 1, 1, 13, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 7, 1, 13, 1, 13, 1, 1, 1, 1, 13
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2019

Keywords

Examples

			For n = 128 = 2^7, A108951(128) = A034386(2)^7 = 128. As 128 = 4 * 30 + 1*6 + 1* 2, A276086(128) = 36015 = 7^4 * 5^1 * 3^1, and there are two such primes that both p and p-2 divide n, and p-2 is also prime, namely, 7 and 5, thus a(128) = 7*5 = 35. This is also the first occurrence of composite number in this sequence.
		

Crossrefs

Programs

  • PARI
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A324886(n) = A276086(A108951(n));
    A322356(n) = { my(f = factor(n), m=1); for(i=1, #f~, if(isprime(f[i,1]+2)&&!(n%(f[i,1]+2)), m *= (f[i,1]+2))); (m); };
    A329346(n) = A322356(A324886(n));

Formula

a(n) = A322356(A324886(n)).

A369743 a(n) = Sum_{p|n, p prime} p * Omega(n/p).

Original entry on oeis.org

0, 0, 0, 2, 0, 5, 0, 4, 3, 7, 0, 10, 0, 9, 8, 6, 0, 10, 0, 14, 10, 13, 0, 15, 5, 15, 6, 18, 0, 20, 0, 8, 14, 19, 12, 15, 0, 21, 16, 21, 0, 24, 0, 26, 16, 25, 0, 20, 7, 14, 20, 30, 0, 15, 16, 27, 22, 31, 0, 30, 0, 33, 20, 10, 18, 32, 0, 38, 26, 28, 0, 20, 0, 39, 16
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 30 2024

Keywords

Crossrefs

Cf. A001222 (Omega), A329347, A369741.

Programs

  • Mathematica
    Table[DivisorSum[n, #*PrimeOmega[n/#] &, PrimeQ[#] &], {n, 100}]

Formula

a(p^k) = p*(k-1), for p prime and k >= 1. - Wesley Ivan Hurt, Jun 26 2024
Showing 1-4 of 4 results.